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Respiratory disease is the third leading cause of death in the industrialized world. Consequently, the trachea,
lungs, and cardiopulmonary vasculature have been the focus of extensive investigations. Recent studies
have provided new information about the mechanisms driving lung development and differentiation. How-
ever, there is still much to learn about the ability of the adult respiratory system to undergo repair and to
replace cells lost in response to injury and disease. This Review highlights the multiple stem/progenitor pop-
ulations in different regions of the adult lung, the plasticity of their behavior in injury models, and molecular
pathways that support homeostasis and repair.
Introduction
The reparative behavior of adult tissues falls along an injury-

response spectrum. At one end of the scale are tissues such

as the epidermis, intestine, and hematopoietic system with a

constitutively high rate of cell turnover and a well-delineated

stem/progenitor cell hierarchy. At the other end are organs like

the heart and brain that contain few stem cells and cannot repair

efficiently, resulting in scarring after injury. In between these two

extremes are tissues such as the lung, liver, and pancreas that

have a low steady-state cell turnover yet can respond robustly

after injury to replace damaged cells. This remarkable capacity

has prompted studies into the mechanisms that mediate induc-

ible repair, as well as strategies to harness them therapeutically.

This Review, written by members of the NIH-funded Lung Repair

and Regeneration Consortium (LRRC; http://www.lungrepair.

org/) has three goals: first, to provide an overview of the stem/

progenitor cells that build the respiratory system and their de-

scendants that repair the adult organ; second, to survey some

of the molecular pathways regulating lung stem/progenitor pop-

ulations; and third, to highlight recent discoveries in lung regen-

eration biology, including bioengineering of the lung.

Stem/Progenitor Populations in Lung Development
The mammalian respiratory system consists of a tree-like ar-

rangement of branched airway tubes connected to a single tra-
chea and terminating in millions of delicate and highly vascu-

larized gas-exchange units known as alveoli (Figure 1). The

epithelium lining the whole system is continuous and initially

arises from a small region of anterior ventral foregut endoderm,

marked by the transcription factor Nkx2-1. By the time the organ

is mature, the epithelium differs significantly along the proximal-

distal axis, both in cellular composition and structural organiza-

tion and, related to this, in stem cell composition and strategies

for repair. Most of the lung mesenchyme likewise arises from a

small population of mesoderm cells that will generate airway

and vascular smooth muscle, cartilage, myofibroblasts, lipofi-

broblasts, and pericytes. The development and patterning of

lung endoderm and mesoderm has been the topic of several

comprehensive reviews (Cardoso and Whitsett, 2008; Herriges

and Morrisey, 2014; Morrisey and Hogan, 2010; Ornitz and Yin,

2012; Shi et al., 2009), and only recent highlights are discussed

here.

From the point of view of regenerative biology, there are mul-

tiple reasons why studying lung development is important. For

example, some preterm babies are born at the stage of lung

development when progenitors of alveolar stem cells are being

laid down (Blackwell et al., 2011). Perinatal infections and inflam-

mation that disrupt alveologenesis and cause bronchopulmonary

dysplasia (BPD) may therefore have long-term consequences

that might be avoided if we knew more about underlying
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Figure 1. Anatomy of the Adult Human and
Mouse Lung and Examples of Human Lung
Pathology
Upper panels: regional epithelial histology in human
andmouse. Left panel: the human trachea, bronchi,
and bronchioles >1 mm in diameter are lined by a
pseudostratified epitheliumwith basal,multiciliated,
and secretory cells. Mucous goblet cells predomi-
nate in the larger airways, and Club cells predomi-
nate in the smaller airways. Individual neuroen-
docrine cells and neuroendocrine bodies (NEBs)
are scattered in the larger airways and increase
distally. Cartilage, smoothmuscle, and stromal cells
are associated with intralobar airways down to the
small bronchioles. The simple cuboidal epithelium
lining the terminal bronchioles leading into the al-
veoli is poorly characterized. The alveoli are lined
by squamous AEC1s and cuboidal AEC2s. Right
panel: in the mouse, only the trachea andmainstem
bronchi have cartilage and a pseudostratified mu-
cociliary epithelium with BCs. The smaller bronchi
and bronchioles are lined by a simple epithelium
with multiciliated and Club cells and fewer neuro-
endocrine cells and NEBs. The inset illustrates a
mouse lung to the same scale as the human lung in
the left panel. Lower panels: normal and pathologic
human lung. (A and B) Images of the alveolar region
in a 2-month-old infant and a normal adult illustrate
that alveolar number increases postnatally through
secondary alveolar septal crest formation. (C) In
pulmonary emphysema, septal destruction and loss
of alveolar cells results in alveolar enlargement. (D)
In pulmonary fibrosis, the terminal bronchioles are
plugged with mucus, alveolar epithelial morphology
is abnormal, and alveolar architecture is drama-
tically altered by fibroblastic deposition of extra-
cellular matrix. (E and E0) Bronchiolitis obliterans
syndrome showing massive infiltration of immune
cells, severe disruption of the small airway epithe-
lium, and thickening of the underlying smooth
muscle and stroma (boxed region magnified in E0).
(F) Normal pseudostratified mucociliary bronchial
epithelium from a lung transplant donor. (G and H)
Goblet secretory cell hyperplasia and squamous
metaplasia, respectively, in chronic obstructive lung
disease. (A–E) and (F–H), respectively, are the same
magnification. Scale bar in (A) is 400 mm.
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mechanisms. More detailed information about the molecular

identity of different cell types and their lineage specification

can also inform strategies for generating lung cells ex vivo from

pluripotent stem cells (PSCs) and provide new tools to mark

and follow the behavior of stem/progenitor cells in models of hu-

man lung disease.

Branching Morphogenesis and Proximal-Distal

Patterning of the Epithelium Occur Early in Lung

Development

Perhaps the best-studied phase in lung development to date is

the process of branching morphogenesis, by which the two pri-

mary lung buds that arise around embryonic day (E) 9.5 in the

mouse and 4–5 weeks gestation in the human give rise to the

airway tree. The buds are composed of a simple endodermal

epithelium surrounded by mesoderm and a vascular plexus.

These tissues are encased in a thin layer of mesothelium that

makes a transient early contribution to mesenchymal lineages

(Dixit et al., 2013). The buds extend and branch in a pattern

that is initially very stereotypic but becomes less so as develop-

ment proceeds (Metzger et al., 2008; Morrisey and Hogan, 2010;

Short et al., 2013). All lung endodermal cells initially express
124 Cell Stem Cell 15, August 7, 2014 ª2014 Elsevier Inc.
Nkx2-1 and this marker persists into the adult. However, as the

primary buds extend and branch, distinct patterns of gene

expression emerge in the endoderm of the stalks versus the

buds. This proximal-distal difference is exemplified by the

expression domains of Sox2 and Sox9, two transcription factors

required for early lung development. Sox2 expression is

confined to the proximal stalks, while Sox9 is dynamically ex-

pressed in themore highly proliferative cuboidal cells of the distal

buds (Chang et al., 2013; Rockich et al., 2013). Many other genes

are differentially expressed in the tips, including Id2, which en-

codes a bHLH transcription factor (Alanis et al., 2014; Herriges

et al., 2012; Rawlins et al., 2009a). Original lineage labeling ex-

periments suggested a model in which the Id2+ tip cells are a

population of multipotent progenitors (Rawlins et al., 2009a).

Early in development the tip cells generate daughters that trans-

locate into the stalks and give rise to Sox2+ precursors of all the

cell types in the intrapulmonary bronchi and bronchioles. These

progeny include neuroendocrine cells, multiciliated cells, and

dome-shaped secretory cells (originally called Clara cells but

now known as Club cells). Evidence suggests that Notch

signaling plays a key role in the patterning and specification



Figure 2. Prenatal and Postnatal
Alveologenesis in the Mouse
Upper panel: schematic of the canalicular and
saccular stages indicating that precursors of
alveolar epithelial cells are laid down before birth.
(Image of whole-mount E16 lung immunostained
for E-cadherin was provided by Ross Metzger.) A
distal canalicular tubule adjacent to the outer
mesothelium is shown in greater detail (boxes).
Evidence supports amodel in which the population
of distal tip cells (that are Sox9+/Id2+) is bipoten-
tial, expresses markers of both mature AEC2
and AEC1 cells, and gives rise to AEC2s (Sftpc+,
orange) and AEC1s (Pdpn+, green, and AGER+,
yellow) through a series of intermediate pro-
genitors (Chang et al., 2013; Desai et al., 2014;
Rawlins et al., 2009a; Treutlein et al., 2014). During
the saccular stage the distal tubules begin to bud
into multiple sacs that are in close contact with
vascular endothelial cells. A few Sox9+/Id2+ pu-
tative bipotential progenitors remain at this stage.
Lower panel: schematic representation of post-
natal changes in lung architecture. The newborn
lung has only primary septa. Around P4 secondary
septa (asterisks) develop from crests of tissue
containing capillary and stromal cells that migrate
in from the walls and subdivide alveoli. The stromal
population is incompletely defined but includes
pericytes, fibroblasts, lipofibroblasts, and myofi-
broblasts. The latter are thought to be the main
producers of the elastin deposited at the tip of
each septum and in the walls, forming an inte-
grated fibroelastic network. Inset (redrawn from
Sirianni et al., 2003) shows a schematic of the
putative ‘‘niche’’ of an AEC2 stem cell. This in-
cludes AEC1s, lipofibroblasts, endothelial cells,
pericytes, and extracellular matrix (dashed line
represents basal lamina, and dots are collagen,
elastin, and many other components).
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of these different cell types (Morimoto et al., 2012; Tsao et al.,

2009). Later in development the Id2+ tip cells give rise to alve-

olar cell types. More recent lineage tracing studies with a Shh-
Cell Stem Cell 1
CreER allele support the idea that tip

cells are multipotent progenitors, al-

though whether activity of this cre driver

is restricted to the distal tip at this stage

of development was not directly tested

(Desai et al., 2014). Future studies using

Sox9-CreER and other progenitor cell-

specific drivers should further refine our

understanding of the multipotency of

distal tip cells.

Alveologenesis: A Critical Stage in

Preparing the Lung for Gas

Exchange

Around E15.0, branching morphogenesis

slows and important changes take place

in the distal epithelium (Figure 2). The

tubes become narrower or ‘‘canalicular’’

and more closely associated with the sur-

rounding vasculature. Cells in the distal

part of the tubules begin to express genes

characteristic of the two epithelial cell

types that make up the mature alveoli,
namely the type 1 cells (AEC1s, which express Hopx, podoplanin

(Pdpn, also known as T1alpha), and AGER) and type 2 cells

(AEC2s, which express proteins associated with high levels of
5, August 7, 2014 ª2014 Elsevier Inc. 125
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surfactant production and secretion, such as SftpA-C) (Treutlein

et al., 2014). Subsequently, the tubules enter the ‘‘saccular’’

phase that involves the ‘‘budding’’ of tiny peripheral sacs sepa-

rated by primary septa. Postnatally, these sacs are further sub-

divided by secondary septa (Figure 2). Lineage tracing suggests

the presence of bipotential cells in the tips of the distal tubules

that can give rise to both AEC1 and AEC2 cells (Desai et al.,

2014). There has been progress in definingmore precisely the in-

termediate progenitors in the lineages between bipotential cells

andmature AEC1 and AEC2 cells, and single-cell RNA-seq anal-

ysis has emerged as a powerful tool in this endeavor (Chang

et al., 2013; Desai et al., 2014; Treutlein et al., 2014). A major

question for the future is the nature of the signals that control

the onset of the canalicular and saccular stages. Roles for sig-

nals from the adjacentmesoderm, including glucocorticoids, ret-

inoic acid, Fgf, parathyroid hormone, and insulin-like growth

factor 1, have been proposed (Alanis et al., 2014; Chang et al.,

2013; El Agha et al., 2014; Epaud et al., 2012; Moreno-Barriuso

et al., 2006; Ramirez et al., 2000). Signals from the vasculature

may play important roles too, given the close association be-

tween endothelium and endoderm at this time (Figure 2).

Development of the alveoli does not stop at birth; their number

and surface area increases dramatically postnatally and con-

tinues for weeks (mice) and months (humans) with the formation

of new secondary septa (Figures 1B and 2). The secondary septa

arise from ridges on the wall of the alveolar sacs and the capil-

laries within them undergo remodeling by mechanisms that are

poorly understood. The capillary meshwork also increases in

size by a process known as intussusceptive microvascular

growth (Burri et al., 2004). Only a very thin layer of matrix, a

shared basal lamina, eventually separates AEC1s and the capil-

lary endothelial cells. Stromal cells also move into the septa and

differentiate into pericytes, lipofibroblasts, myofibroblasts, and

other poorly defined lineages. Lipofibroblasts appear to asso-

ciate closely with AEC2s while myofibroblasts lay down elastin

fibers at the tip of the septa and in the stalks. These fibers

form an integrated network throughout the alveolar region,

providing a flexible and elastic scaffold that is critical for main-

taining lung function and for keeping the small terminal airways

and alveolar ducts open (Weibel, 2013). Mechanical forces and

physical stress are emerging as key regulators of alveolar devel-

opment, maintenance, repair, and regrowth (reviewed in Hsia

et al., 2004; Wirtz and Dobbs, 2000).

EmbryonicMesodermContributes to LungDevelopment

and Promotes Epithelial Differentiation

The mesodermal component of the lung primordium plays mul-

tiple roles in lung development (reviewed in Herriges and Morri-

sey, 2014). The cells around the distal tips function as a critical

signaling population producing Fgf10 and other signaling mole-

cules that drive outgrowth of the distal buds and branching

morphogenesis. This early mesoderm also contains progenitors

for specific cell populations of the adult lung. A major focus of

recent studies is to understand how these mesodermal deriva-

tives contribute to adult lung function and to regeneration and

repair. Recent cell lineage tracing experiments have demon-

strated that the early mesoderm harbors a cardiopulmonary

mesoderm progenitor (CPP) that expresses Wnt2/Gli1/Isl1 and

can generate both cardiac and lung mesodermal derivatives,

including cardiomyocytes, endocardium, pulmonary vascular
126 Cell Stem Cell 15, August 7, 2014 ª2014 Elsevier Inc.
and airway smooth muscle, and pulmonary Pdgfrb+ pericyte-

like cells (Peng et al., 2013). As development proceeds, CPPs

lose their ability to contribute to the various lung mesodermal

derivatives and by the end of gestation can only make Pdgfrb+

pericyte-like cells and not smooth muscle or endothelium. This

same study also showed that the bulk of the vascular endothelial

plexus in the alveolar region is derived from preexisting embry-

onic endothelium, likely through an angiogenic process (Peng

et al., 2013). Since Wnt2+ and Gli1+ cells persist in the adult

lung, an important question is whether these cells play a role in

regeneration after injury. Gli1 is a downstream effector of Hedge-

hog signaling and components of this pathway have been as-

sociated in GWAS studies with chronic obstructive pulmonary

disease (COPD) (Pillai et al., 2009; Wang et al., 2013a; Wilk

et al., 2009). Therefore, the Hedgehog pathway and Gli1+ cells

may play a role in adult lung homeostasis and injury response

by controlling mesodermal expansion.

Lineage tracing studies have also shown that the Fgf10-pro-

ducing cells of the distal lung give rise to multiple mesodermal

components in the adult, including airway smooth muscle and

alveolar lipofibroblasts (El Agha et al., 2014). There is evidence

that Fgf10 is reactivated in parabronchial smooth muscle after

injury, including exposure to naphthalene, and may promote

the reparative process (Volckaert et al., 2011).

Previous work has established a requirement for Pdgfra-ex-

pressing cells in the distal embryonic lung for the development

of alveolar myofibroblasts (Boström et al., 1996). Recent studies

have indicated that Pdgfra is dynamically expressed in alveolar

myofiboblasts during regrowth after pneumonectomy (PNX)

(Chen et al., 2012b). Pdgfra also marks a population of lipofibro-

blast-like cells that are spatially associated with AEC2 cells and

likely form part of the alveolar stem cell niche (Figure 2) (Barkaus-

kas et al., 2013). Studies such as these have begun to address

some of the outstanding questions about the origin, heterogene-

ity, and function of lung mesodermal cells and how they interact

with the various epithelial components to establish and maintain

normal lung function and contribute to repair.

Applying Developmental Pathways to Derive Lung

Progenitors from PSCs

One area of research where developmental studies are having

a big impact is in the derivation of lung cells from PSCs.

Several groups have demonstrated that stepwise application

of signaling factors in a manner that mimics the sequence of

events during early anterior foregut and lung development is

critical for deriving lung endoderm progenitors from mouse

and human PSCs. Key pathways include those downstream

of Activin/Nodal, Wnts, Bmps, and Fgfs (Ghaedi et al., 2013;

Huang et al., 2014; Longmire et al., 2012; Mou et al., 2012;

Wong et al., 2012). PSC-derived lung endoderm can be used

for basic studies of diseases such as cystic fibrosis and po-

tentially for cell-based therapies. This area of research will

undoubtedly continue to be an important focus in lung regen-

eration research.

Regional Epithelial Stem/Progenitor Cell Populations
Mediating Adult Lung Homeostasis and Regeneration
Three interrelated concepts have emerged from recent studies

on adult lung reparative cell biology. The first is that, depending

on the composition and organization of the respiratory
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epithelium, distinct regions of the lung contain different popula-

tions of epithelial cells that function as adult stem cells, as

defined by their ability to undergo long term self-renewal and

give rise to different cell types during homeostatic turnover or

cell replacement after injury. The second is that lung cells exhib-

iting stem/progenitor activity are not necessarily undifferen-

tiated. While Trp63+ basal cells (BCs) in the pseudostratified

mucociliary epithelium are morphologically simple, AEC2 cells

in the alveoli and Club cells in mouse bronchioles, both of which

function as long-term stem cells, also express genes associated

with specialized functions, such as surfactant protein synthesis

and secretion and glycoprotein production, respectively. The

third concept is that in response to tissue damage, epithelial cells

that express markers of one differentiated cell type can, under

certain circumstances, change their phenotype and give rise to

cells that either transiently or stably express markers character-

istic of another cell type. In some cases lineage tracing experi-

ments have shown that this phenotypic switching or plasticity

involves a process of ‘‘dedifferentiation’’ to a less specialized,

multipotent and proliferative intermediate, followed by rediffer-

entiation. In other cases the precise steps involved have not

yet been identified and it remains possible that the phenotypic

switch is ‘‘direct’’ and does not involve a specific undifferentiated

and proliferative intermediate. Phenotypic plasticity is not unique

to the lung and dedifferentiation or transdifferentiation appar-

ently occur quite frequently in response to adverse events in

various tissues (Blanpain and Fuchs, 2014; Fuhrmann et al.,

2014). Importantly, the process can be strongly influenced by

the particular kind of damage sustained, whether it is acute

or chronic, and whether it involves inflammation or immune

modulation.

Modern studies of stem cell behavior, including investigation

of plasticity in the physiological context of an adult tissue under-

going repair, are heavily dependent on the technique of lineage

tracing (Blanpain and Simons, 2013). In the following sections

we summarize some of the recent findings about epithelial

stem/progenitor cell lineages in different regions of the adult

lung, focusing on studies based on rigorous lineage labeling stra-

tegies.

Stem and Progenitor Cells of the Pseudostratified

Mucociliary Airway Epithelium Contribute to Repair and

Regeneration

Most of the airways of the human lung, down to about 1.0–

1.5 mM in diameter, are lined by a pseudostratified mucociliary

epithelium containing multiciliated, secretory, tuft, and neuroen-

docrine cells, as well as a population of BCs that are tightly

attached to the basal lamina through hemidesmosomes contain-

ing a6b4 integrin. The height of the luminal cells and properties

such as the proportion of goblet and different secretory cells

and the density of BCs vary along the proximal-distal axis. Un-

derlying the epithelium are blood vessels, smooth muscle, carti-

lage, stromal fibroblasts, and nerves. As shown in Figure 1 and

schematically in Figure 3, the normal organization of the muco-

ciliary epithelium is disrupted in common pathological condi-

tions. In the case of mucus hyperplasia there are many more

goblet cells than normal, while in squamous metaplasia there

are multiple layers of BCs that give rise to keratinized squamous

cells. Both mucus hyperplasia and squamous metaplasia are

seen in the condition known as COPD.
A similar basic organization of pseudostratfied mucociliary

epithelium and underlying mesenchyme is found in the mouse

trachea (which is about 1.5 mM in diameter), extralobar bronchi,

and the first two or three generations of branches along the intra-

lobar main axial pathway. These regions therefore provide an

experimental platform for modeling human airways (Rock

et al., 2010) (Figure 3). The BCs of the mouse proximal airways

characteristically express Trp63, Ngfr, Pdpn, the alpha 1-3 gal

epitope that binds GSIB4 lectin, and cytokeratin 5 (Krt5) (Paul

et al., 2014; Rock et al., 2009; Tata et al., 2013). At steady state

about 20% of BCs also express Krt14 (Cole et al., 2010). This cy-

tokeratin is also constitutively expressed in BCs lining the ducts

of submucosal glands (that are not considered further here) and

is upregulated inmost Krt5+ BCs during repair (Hong et al., 2004;

Wansleeben et al., 2014). The number and proportion of Krt5+

BCs decline with age in the mouse trachea, which occurs along

with other significant changes in epithelial architecture and

composition of stromal immune cells (Wansleeben et al.,

2014). The consensus from in vivo lineage tracing experiments

is that BCs are stem cells that self-renew over the long term

and give rise to ciliated and secretory luminal cells during post-

natal growth, homeostasis, and epithelial repair after loss of

luminal cells (Figure 3). Different experimental models have

been developed to induce this loss in the mouse. For example,

exposing mice to toxic gases (e.g. SO2, or chlorine) or detergent

kills all proximal luminal cells, while systemic naphthalene kills

Club cells in the trachea as well as the bronchioles. There are

many questions about BCs that have not yet been fully

answered. For example, we do not know whether all Trp63+/

Krt5+ BCs are multipotent, with the same reparative capacity,

or whether there are subsets that are quiescent (for example

Krt5+ cells versus Krt5+/Krt14+ cells) or have intrinsically

different potentials. These questions await quantitative, single-

cell clonal analysis under both steady-state and different repar-

ative conditions. In addition, we do not know the precise mech-

anisms by which BCs give rise to ciliated and secretory cells and

what environmental signals affect the fate decision. One model,

based on studies of the intestinal stem cells of the Drosophila

larval midgut (Lucchetta and Ohlstein, 2012; Ohlstein and Spra-

dling, 2007), holds that BCs give rise to Trp63�/Krt5+/Krt8+

early progenitors or ‘‘intermediate’’ cells that can proliferate

and give rise to either secretory or ciliated cells depending on

local signals, including the level of intracellular Notch signaling

(Guseh et al., 2009; Rock et al., 2011b). Recent studies in the hu-

man lung have described a powerful noninvasive lineage tracing

methodology for addressing the potential of individual airway

progenitor cells to self-renew and differentiate (Teixeira et al.,

2013). The results are consistent with a model in which BCs

are a population of mutipotent progenitors that self-renew and/

or differentiate stochastically to maintain tissue homeostasis.

However, they do not rule out the existence of a quiescent

stem cell pool that is only activated after injury.

One question of practical relevance for regenerative thera-

pies in the human lung is whether BCs are the only cell that

can efficiently repair the pseudostratified epithelium or whether

differentiated cells can become BCs under certain conditions.

This question has been addressed using the rodent trachea

as a model. Pioneering studies by Randell and colleagues us-

ing denuded rat tracheas suggested that GSIB4� luminal cells
Cell Stem Cell 15, August 7, 2014 ª2014 Elsevier Inc. 127



Figure 3. Homeostasis, Repair, and Remodeling of Pseudostratified Mucociliary Airway Epithelium with BCs
Solid lines represent transitions or lineages that are generally accepted, while dotted lines are speculative lineages or relationships. Curved arrows represent self-
renewal. Left panel: schematic representation of pseudostratified mucociliary epithelium of the human lung. The density of BCs and height and composition of
luminal cells varies along the main axis. A few ‘‘intermediate’’ cells, which may represent immediate undifferentiated progeny of BCs, are present. In mucus
hyperplasia the number of goblet cells increases either by proliferation of existing goblet cells or by differentiation of other secretory cells. In squamous
metaplasia, BCs change their behavior so that the pool of proliferative Krt5+/Krt14+ BCs expands and stratifies and upper layers differentiate into keratinized
squamous cells. Both conditions may be reversible. Right panel: repair and remodeling in the mouse trachea and primary bronchi. Since few goblet cells are
normally present in mouse airways, their increase in number in response to immune stimuli is called metaplasia rather than hyperplasia. Genetic lineage tracing
has shown that Scgb1a1+ cells are the predominant source of goblet cells in response to allergen exposure (Chen et al., 2009). If luminal cells are killed by SO2,
surviving BCs spread and proliferate. They give rise to a population of Krt8+ progenitors that differentiate into ciliated and secretory cells. There is transient influx
of immune cells into the underlying stroma. If BCs are killed genetically, secretory cells lineage-labeled with a driver for differentiated cell products (Scgb1a1 or
Atpv1b) give rise to some of the regenerated BCs that continue to function as stem cells (Tata et al., 2013). Inset shows some of the nonepithelial components of
the BC ‘‘niche.’’ In addition to the basal lamina, these include fibroblasts and vasculature and immune cells. Lower panel: summary of lineage relationships from
studies with both mouse and human airways. In both tissues BCs are heterogeneous for expression of Krt14; whether these BCs are interconvertable and/or
whether Krt14+ cells have a higher probability of differentiation rather than self-renewal is not known. The existence of an intermediate progenitor cell is inferred
from studies on repair. This cell is Krt8+ but may transiently express Krt5/Krt14. BCs and their immediate daughters give rise to ciliated and secretory cells during
repair (Rock et al., 2011b). Whether they directly give rise to neuroendocrine cells and goblet cells or whether goblet cells only arise from secretory cells is not
known. Secretory cells include Scgb1a1+ Club cells as well as variant Club cells that predominantly express other products (see text). Scgb1a1+ cells can give
rise to ciliated cells.
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were just as able to regenerate the entire epithelium as lectin+

BCs (Liu et al., 1994). Subsequent lineage tracing studies

showed that secretory cells expressing secretoglobin 1a1

(Scgb1a1; also called CCSP or CC10) can give rise to Krt5+
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BCs after SO2-induced injury, but the frequency of conversion

was very low, probably because mostly BCs survive this injury

(Rawlins et al., 2009b). To overcome this problem, Rajagopal

and colleagues used a strategy to specifically kill Krt5+ BCs



Figure 4. Epithelial Cells of Mouse
Bronchioles and the Cellular Responses
to Injury
Schematic representation of different cell types in
the mouse bronchiolar epithelium. All cells are
likely attached to the basal lamina through a6b4
integrin. The full heterogeneity of epithelial cell
types is still under investigation and the presence
of rare Trp63+ cells is controversial. Shown with
dashed arrows are putative cells-of-origin of the
Krt5+/Trp63+ basal-like cells present in ‘‘pods’’ in
the lungs of mice after infection with H1N1 in-
fluenza virus. There is some evidence that these
Krt5+ cells contribute to the regeneration of
damaged alveoli, but more lineage tracing data are
required.
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in the mouse trachea in vivo (Tata et al., 2013). Under these

conditions they found that differentiated Scgb1a1+ or

Atpv1b1+ lineage labeled secretory cells can undergo dedif-

ferentiation into Trp63+/Krt5+ BCs. These BCs persist over

the long term and behave like normal Krt5+ stem cells. An

important question raised by all these studies concerns the

mechanisms that normally constrain the potential plasticity of

secretory cells. Data from the studies by Tata et al. using

in vitro culture experiments suggest that contact with BCs pre-

vents luminal cells from dedifferentiation, but the precise

mechanisms driving reprogramming and subsequent stem

cell function need further study.

How basal and luminal cells repopulate an airway denuded of

epithelium by injury has considerable relevance to proposals to

bioengineer replacement lungs or airway segments by seeding

cells into decellularized lung ‘‘scaffolds’’ (see later section). Ev-

idence from in vivo injury/repair models suggests that if the

basal lamina is not completely covered by BCs, the underlying

stroma proliferates out of control and gives rise to granulation

tissue containing fibroblasts and immune cells and blocks the

airways (O’Koren et al., 2013). This finding suggests that there

is normally a tight interplay between the airway epithelium and

the underlying stroma that keeps fibrosis in check. Identifying

the factors that mediate this signaling may not only inform stra-

tegies for bioengineering replacement parts but also provide

insights into respiratory disorders, such as bronchiolitis obliter-

ans, in which fibrosis restricts small airways in the human lung

(Figure 1).
Cell Stem Cell 1
Lung Injury Models Reveal

Differential Regenerative

Capacities of Epithelial Cells of the

Mouse Bronchioles

The small intralobar airways of the mouse

lung are called bronchioles; they do not

have cartilages or a dedicated systemic

blood supply and are surrounded by

airway smooth muscle and fibroblasts

(Figures 1 and 4). The epithelial lining is

a simple cuboidal epithelium containing

Foxj1+ multiciliated cells and neuroendo-

crine cells that are usually clustered into

neuroendocrine bodies (NEBs). The bron-

chioles also contain a heterogeneous
population of secretory cells that are still not fully defined. The

best-studied are Club cells that in the mature state have a char-

acteristic domed appearance with vesicles containing the secre-

toglobin Scgb1a1. There has been recent progress in identifying

newmarkers for Club cells that can be used to follow their devel-

opment and functional heterogeneity (Guha et al., 2014). Club

cells immediately adjacent to NEBs are resistant to naphtha-

lene-induced depletion and characteristically express low levels

of Scgb1a1 but high levels of Scgb3a2 and uroplakin 3a (Upka3)

(Guha et al., 2012).

Using standard immunohistochemical analysis, the bronchi-

oles of the mouse lung do not appear to contain BCs, but the

presence of rare Trp63+ cells has not been ruled out. The transi-

tion from bronchioles to alveolar sacs in themouse lung is known

as the bronchioalveolar duct junction (BADJ). It contains a few

cells (<1 per BADJ) that coexpress Scgb1a1 and surfactant pro-

tein C (Sftpc) proteins and are proposed as putative bronchioal-

veolar stem cells (BASCs) (Kim et al., 2005) (Figures 3 and 4). It

should be noted that the transition between terminal bronchioles

and alveoli is quite different in mouse lung as compared to hu-

man lung (Figure 1).

Turnover of mouse bronchiolar epithelium is normally quite

low, but lineage tracing studies have established that Scgb1a1+

cells do self-renew and give rise to ciliated cells over the long

term (Rawlins et al., 2009b). Thus, the Scgb1a1+ population

meets the definition of long-term stem cells although it demon-

strates a differentiated phenotype. Moreover, as discussed

here and in the next section, there is now evidence that the
5, August 7, 2014 ª2014 Elsevier Inc. 129



Figure 5. Stem Cells of the Mouse Alveolar Region and Their Role in
Response to Injury
Schematic diagram of normal mouse alveolar region and changes elicited by
exposure to bleomycin. At steady state there is little cell turnover and AEC2s
self-renew and give rise to AEC1s with low frequency. Bleomycin damages
multiple alveolar cell types resulting in the exposure of denunded basal lamina
and matrix (dashed lines) and influx of immune cells. Various mesenchymal
cells proliferate and give rise to myofibroblasts and large amounts of extra-
cellular matrix. In this model evidence argues against myofibroblasts being
derived from epithelial cells and the fibrosis is transient (Rock et al., 2011a).
Both AEC2s and Scgb1a1+ cells in the BADJ proliferate and give rise to
the majority of the AEC2 and AEC1 cells (dotted cells) in the fibrotic
regions (Barkauskas et al., 2013). Epithelial cells in the alveolar region that are
Sftpc�/b4 integrin+ may also be a source of reparative AEC2s (Chapman
et al., 2011). Lower panel: schematic of different cell types involved in alveolar
turnover and repair in the bleomycin injury model. A detailed inventory of
epithelial markers can be found from single-cell RNA-seq studies (Treutlein
et al., 2014).
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proliferation and phenotype of Scgb1a1+ Club cells can change

in response to certain injury/repair models (Figures 4 and 5).

Systemic treatment of mice with naphthalene kills Club cells

that express the cytochrome Cyp2f2. Ciliated cells spread to

cover denuded matrix but do not proliferate, and the epithelium

is restored by the proliferation of naphthalene-resistant Club
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cells, including those adjacent to NEBs and in the BADJ (Gian-

greco et al., 2002; Guha et al., 2014). It has been suggested

that the NEBs provide a specific niche for reparative Club cells.

However, deletion of neuroendocrine cells did not affect the abil-

ity of Club cells to regenerate after naphthalene injury (Song

et al., 2012). Lineage tracing studies using a Cgrp-CreER allele

have provided evidence that differentiated neuroendocrine cells

can proliferate after naphthalene-induced loss of Club cells and

give rise to lineage labeled Club and ciliated cells. This conclu-

sion is tempered by the fact that the wash-out period between

tamoxifen administration and naphthalene treatment was very

short, so that in these experiments Club cells upregulating

Cgrp might have been lineage labeled (Song et al., 2012).

The damage caused by naphthalene treatment is relatively

specific and appears to be rapidly repaired. However, much

more extensive damage is caused in the mouse lung by H1N1

influenza viral infection (Kumar et al., 2011). Although there is

clinical evidence for repair of the human lung after acute influ-

enza infection (Toufen et al., 2011), precise mechanisms are still

poorly understood. In the mouse it appears that a quite unex-

pected level of plasticity can be evoked in epithelial cells in

response to signals expressed after such viral infection. Immu-

nohistochemistry of mouse lung after infection shows the pres-

ence of epithelial ‘‘pods’’ containing Krt5+/Trp63+ basal-like

cells both around the bronchioles and within the alveoli in the

areas of greatest damage (Kumar et al., 2011) (Figure 3). Lineage

tracing experiments using an Scgb1a1-CreER allele have sug-

gested that the pods arise from Club cells. However, in these

experiments the wash-out period between administration of

tamoxifen and viral infection was again quite short (7 days).

Consequently, an Scgb1a1� cell activated by the injury might

have been labeled if it transiently upregulatedScgb1a1 early dur-

ing the repair process (Zheng et al., 2014). Alternatively, the pods

may arise from as yet uncharacterized progenitor populations in

the bronchioles and/or from AEC2 cells in the alveoli (Xian and

McKeon, 2012). Krt5+ pods have been identified in mouse lungs

after bleomycin injury (Zheng et al., 2014), but again, their origin

is not yet resolved. Given the high relevance of influenza infection

to human health, this is an important area of research. More in-

formation is needed about the extent to which the Krt5+ repara-

tive cells do in fact contribute to alveolar repair, how this is

achieved, and whether the same cell type or types play a role

in the human lung.

The Importance of Injury Models for Studying Stem and

Progenitor Cells of the Alveolar Compartment

The major epithelial cell types of the gas exchange region are

cuboidal AEC2s, specialized for surfactant protein production

and secretion and flat, highly extended AEC1s, specialized for

gas exchange (Figure 5). Cell turnover is normally very low, but

numerous studies have shown changes in cell behavior,

including proliferation, normal differentiation, and phenotypic

plasticity in response to a variety of injury models. These include

exposure to nitric oxide, high levels of oxygen (hyperoxia), the

chemotherapy drug bleomycin, cigarette smoke, irradiation,

and viral infection.

Alveolar epithelial type 2 cells (AEC2). Studies more than 40

years ago with H3 thymidine labeling showed that AEC2s in adult

monkeys and rats proliferate in response to injury by hyperoxia

and nitric oxide and give rise to AEC1s (Evans et al., 1975;
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Kaplan et al., 1969). This capacity for self-renewal and differen-

tiation of adult AEC2s has been confirmed by recent in vivo ge-

netic lineage tracing studies using Cre recombinase driven by

genes associated with differentiated functions such as Sftpc

and Lyz2 (LysM) (Barkauskas et al., 2013; Desai et al., 2014). In

steady state, there is relatively little clonal expansion of individual

AEC2s and very little differentiation into AEC1s. After injury of the

alveolar region by bleomycin (Rock et al., 2011a) and by hyper-

oxia (Desai et al., 2014), the rate of differentiation of lineage

labeled AEC2s into AEC1s is much higher. To follow this regen-

erative capacity in the absence of confounding fibrosis, a new

model of lung injury was developed in which about 50% of

the AEC2 cells are specifically killed by induced expression of

diphtheria toxin. Lineage tracing, coupled with new imaging

techniques, showed that surviving AEC2 cells undergo clonal

expansion, with daughter cells dispersing among neighboring al-

veoli, most likely by active migration (Barkauskas et al., 2013).

The rate of differentiation into AEC1s is low, presumably

because this cell population is not damaged.

These observations raise several interesting questions. For

example, is there heterogeneity in the AEC2 population or do

they all have the same capacity for self-renewal and differentia-

tion? Some evidence for heterogeneity comes from the fact that

about 10% of adult AEC2s are lineage labeled in vivo by an

Scgb1a1-CreER knockin allele and give rise to adenocarci-

nomas after Kras activation (Xu et al., 2012). In addition a recent

report suggests that an Sftpc�/integrin b4+ cell type exists in the

alveoli that can generate Sftpc+ AEC2 and AEC1 cells after injury

(Chapman et al., 2011). Another important question is the nature

of the niche in which AEC2s reside and whether it produces spe-

cific survival and homing signals after loss of AEC2s. To address

this question, assays have been developed for clonal expansion

of lineage labeled AEC2s in 3D organoid culture. In this assay,

AEC2s only proliferate in the presence of Pdgfra+ stromal cells

and they form ‘‘alveolopheres’’ containing lineage labeled

AEC1s expressing a number of markers, including Pdpn,

Hopx, AGER, and Aquaporin 5 (Barkauskas et al., 2013). Similar

assays are being used to identify factors made by other meso-

dermal lineages such as endothelial cells that together with the

fibroblasts likely comprise the alveolar stem cell niche (Lee

et al., 2014). In turn, understanding how AEC2s regulate the

behavior of the niche is also important, and recent studies sug-

gested a role for Bmp4 and thrombospondin in the reciprocal

interaction between epithelial progenitors and endothelial cells

(Lee et al., 2014).

It is has been hypothesized that AEC2s that are stressed due

to cellular damage or aging are unable to undergo self-renewal

and generation of AEC1s but instead signal fibroblastic prolifer-

ation, or at least fail to keep stromal proliferation in check. In the

human, stress may be caused by genetic mutations resulting in

unfolded surfactant proteins. In the disease dyskeratosis conge-

nita, environmental stimuli such as smoke or dust combined with

a relative stem cell deficiency due to lack of telomerase compo-

nents results in pulmonary fibrosis (reviewed in Noble et al.,

2012). Identification and characterization of the signals gener-

ated by AEC2s that keep stromal populations in a quiescent

state will be important for future development of therapies for fi-

broproliferative diseases such as idiopathic pulmonary fibrosis

and bronchiolitis obliterans.
Alveolar epithelial type 1 cells (AEC1). Previous studies have

suggested that AEC1s normally have a limited proliferative ca-

pacity in vivo and can modulate their identity when cultured

in vitro (Danto et al., 1995; Evans et al., 1973). In the future, novel

tools including inducible Cre lines made using genes such as

Hopx and AGER expressed in mature AEC1s (Barkauskas

et al., 2013; Takeda et al., 2013; Treutlein et al., 2014) may allow

the ability of these cells to proliferate and give rise to AEC2 cells

in specific injury models to be addressed unambiguously. The

potential role of changes in AEC1s, AEC2s, and mesenchymal

cells in the development of smoking- and age-related emphy-

sema, in which there is a decline in the number of AEC2s and

simplification of alveoli (Figure 1), is also an important avenue

of inquiry.

Remodeling and Regrowth of the Alveolar Region after
PNX and Bleomycin Injury
Upon reaching adulthood, cessation of rib cage expansion coin-

cides with the cessation of lung growth in largemammals. There-

after, reinitiation of lung growth/regeneration requires changes in

mechanical signals and the availability of space for the lung to

grow. This can be provided experimentally by the process of uni-

lateral PNX (Dane et al., 2013; Ravikumar et al., 2013, 2014). In

this procedure in mice, the single left lobe is removed, leaving

the four right lobes intact. This results in the regrowth or ‘‘real-

veolarization’’ of the remaining lungs. New lobes are not added,

but there is a dramatic increase in alveolar number through addi-

tion of new septa and a restoration in respiratory capacity in the

remaining lung within 2–3 weeks for rodents. New alveolar tissue

is preferentially laid down at the periphery of the lung (Foster

et al., 2002; Massaro and Massaro, 1993), where mechanical

strain of the septa is accentuated due to a relative lack of bron-

chovascular support (Yilmaz et al., 2011). Evidence exists for

proliferation and changes in the behavior of multiple cell lineages

in the PNXmodel, including bronchiolar cells, AEC2s, endothelial

cells, and Pdgfra+ stromal cells (Chen et al., 2012b; Eisenhauer

et al., 2013; Hoffman et al., 2010; Hsia, 2004; Thane et al., 2014;

Voswinckel et al., 2004).

Evidence points to the increase in proliferation after PNX being

regulated by a combination of signaling pathways, matrix

composition and remodeling, especially related to elastin, and

mechanical forces. Early studies suggested that EGF and FGF

signaling promote post-PNX alveolar regeneration (Kaza et al.,

2000, 2002), and this has been supported by later work focusing

on the role of pulmonary capillary endothelial (PCE) cells in pro-

ducing paracrine growth factors (Ding et al., 2011). After PNX,

there is increased proliferation of PCEs, and their activation of

VEGFR-2 and upregulation of FGFR1 and MMP-14 are neces-

sary for the restoration of lung mass and function. Despite these

intriguing observations, the precise cellular mechanisms that

result in the dramatic increase in alveolar number and lung ca-

pacity remain unclear. Detailed anatomical studies, including

scanning electron microscopy of vascular casts, suggest that

alveolar number increases by the ingrowth of crests of tissue

containing capillaries and stromal cells from the walls of preex-

isting alveoli, a process that mimics normal postnatal develop-

ment (Figure 2) (Ackermann et al., 2014). Elucidation of the

mechanisms that drive regrowth, and how they are attenuated

as lung capacity is restored, may suggest potential therapeutic
Cell Stem Cell 15, August 7, 2014 ª2014 Elsevier Inc. 131
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interventions for when repair does not occur properly. However,

it will first be important to translate findings with small rodent

models to larger animal models with different mechanical and

growth conditions in their lungs (Hsia, 2004; Thane et al., 2014).

An injury model that is widely used in research is exposing

mice to intratracheal bleomycin, a chemotherapy drug that

causes damage to multiple cell types in the alveoli, including

AEC1 and endothelial cells. One of the consequences of bleo-

mycin exposure is a transient disruption of alveolar architecture

and fibrosis, together with the appearance of many myofibro-

blasts and AEC2s with abnormal morphology (Figure 5). Lineage

tracing studies in this injury model have shown twomain sources

of reparative AEC2s and AEC1s. Some of them are derived from

Sftpc+ AEC2s in the alveoli, while others are derived from dif-

ferentiated Scgb1a1+ Club cells in the terminal bronchioles

(Barkauskas et al., 2013; Chen et al., 2012a; Rock et al.,

2011a; Tropea et al., 2012). Dual-positive Scgb1a1+/Sftpc+

cells that reside in the BADJ (called BASCs) also contribute to

this phenotypic conversion. However, knowing whether they

are more efficient at this than neighboring Club cells will require

cell-specific lineage tracing tools. Significantly, Club cells do not

give rise to AEC2 and AEC1 cells after injury to the alveoli by hy-

peroxia. Thus, while Club cells can be considered a facultative

stem cell population capable of extensive expansion and pheno-

typic flexibility during regeneration, this does not occur in all

injury/repair models.

Pathways that Promote Lung Repair and Regeneration
A major goal in the field of lung repair is to define the molecular

pathways that regulate the activation, expansion, and differenti-

ation of stem and progenitor lineages in response to injury and

repair. One strategy is to focus on interactions between epithelial

and mesenchymal cells in the reparative niche because cross-

talk between these populations is known to be an essential pro-

cess for proper development of the lung. A recent example of this

approach is a study showing that thrombospondin-1, expressed

by lung endothelial cells, controls the differentiation of a subpop-

ulation of Sca1+ self-renewing lung epithelial cells (Lee et al.,

2014). Bmp4 activated expression of thrombospondin-1 in lung

endothelial cells, which in turn regulated the differentiation of

Sca1+ lung epithelial cells. However, the source of Bmp4 in

the adult lung in vivo was not determined in these studies (Lee

et al., 2014).

Other signaling pathways, such as Wnt and Notch, known to

play important roles in stem cell self-renewal and differentiation

also play key roles in lung repair and regeneration. Wnt signaling

is an essential regulator of early lung endoderm specification and

development and has been implicated in regulating regenerative

responses. Using Wnt reporter lines, several groups have

demonstrated activation of canonical Wnt signaling in various

compartments in the lung undergoing active regrowth and

regeneration (Al Alam et al., 2011; Aumiller et al., 2013; Flozak

et al., 2010; Hashimoto et al., 2012; Zhang et al., 2008). In the

airway epithelium, Wnt signaling is activated upon secretory

cell depletion by naphthalene treatment. Activation of Wnt

signaling through loss of the critical transcription factor Gata6

leads to expansion of the putative BASC population after naph-

thalene injury (Zhang et al., 2008). However, postnatal deletion of

b-catenin (Ctnnb1) in this model did not inhibit secretory cell
132 Cell Stem Cell 15, August 7, 2014 ª2014 Elsevier Inc.
regeneration, suggesting that canonical Wnt signaling is not

essential in this model of lung regeneration (Zemke et al., 2009).

Wnt signaling is also profibrotic, and increased Wnt signaling

has been demonstrated in idiopathic fibrosis lesions (Chilosi

et al., 2003). Loss of Ctnnb1 in postnatal alveolar epithelium

leads to increased fibrosis and alveolar epithelial cell death (Tan-

jore et al., 2013). Moreover, blocking Wnt signaling pharmaco-

logically can reduce fibrosis caused by bleomycin treatment in

mice, although whether this is an effect on alveolar epithelial or

meseodermal lineages is unknown (Henderson et al., 2010).

Thus, the ability of Wnt signaling to promote proper repair and

regeneration after injury is context dependent and chronic acti-

vation could lead to increased fibrosis.

The role for Notch signaling in promoting the secretory cell

phenotype over the ciliated cell phenotype during lung endo-

derm development (Guseh et al., 2009; Tsao et al., 2009) is reca-

pitulated in the response of BCs after airway injury. Notch

signaling is essential for BC self-renewal and differentiation of

these cells into the secretory cell lineage after SO2-mediated

airway epithelial injury. Increased Notch activation can expand

the secretory lineage at the expense of the ciliated lineage

(Rock et al., 2011a; Xing et al., 2012). In recent studies it has

been found that reactive oxygen species (ROS) activate Notch

signaling by activating Nrf2 (Paul et al., 2014). The ROS-Notch

pathway is important for BC self-renewal through regulation of

cell proliferation, whichmay be critical formaintaining the correct

number of BCs in the upper airways of mouse and human lungs.

Histone acetylation and deacetylation activities are also

altered in lung diseases such as asthma and COPD. Asthmatic

bronchial epithelium displays increased histone acetyltransfer-

ase (HAT) activity and decreased histone deacetylase (HDAC)

activity (Gunawardhana et al., 2014). Corticosteroid treatment

of asthma induces acetylation and activation of anti-inflamma-

tory genes and recruitment of HDAC2 complexes to deacetylate

and silence proinflammatory genes (Ito et al., 2002). COPD pa-

tient biopsies show a correlation between disease progression

and loss of HDAC2 expression and activity, but lower HDAC ac-

tivity is resistant to anti-inflammatory steroid therapy (Ito et al.,

2005). In mice, genetic deletion of HDAC1/2 in the secretory

epithelium led to the induction of tumor suppressors Rb1,

p21/Cdkn1a, and p16/Ink4a after injury, which resulted in

reduced proliferation and a persistent loss of epithelial regener-

ation (Wang et al., 2013b). This loss in regeneration was persis-

tent, indicating that HDAC1/2 are required for regeneration of se-

cretory epithelium after naphthalene-induced depletion in the

lung. HDAC function may also be important for regulating the

proper balance of AEC1 and AEC2 cells during development

and regeneration. Hopx, expressed by AEC1s and by alveolar

progenitors, recruits HDAC2 to negatively regulate AEC2-spe-

cific gene expression (Yin et al., 2006).

HDACs are also known to bind to nonhistone proteins. The

forkhead transcription factors Foxp1/2/4 are expressed at high

levels in the developing lung epithelium (Lu et al., 2002; Shu

et al., 2007). The interaction between Foxp1/2 and HDAC activity

plays an important role in lung injury and regeneration, as

demonstrated by the resistance of Foxp1/HDAC2 double het-

erozygous animals to hyperoxic injury mediated by the regula-

tion of the cytoprotective cytokine IL-6 (Chokas et al., 2010).

The combined loss of Foxp1/4 in the postnatal Scgb1a1+
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secretory lineage results in spontaneous differentiation of

Scgb1a1+ cells into Muc5a/c+ goblet cells (Li et al., 2012).

Importantly, this abnormal secretory epithelium lacking Foxp1/

4 is unable to regenerate after naphthalene-induced injury, sug-

gesting that acquisition of a goblet-like phenotype impairs

airway secretory cell regeneration (Li et al., 2012).

Developmental studies in the lung have revealed critical roles

for multiple species of noncoding RNAs, including miRNAs and

long noncoding RNAs (lncRNAs), in epithelial branching and

differentiation. Two miRNA clusters play important roles in

lung epithelial endoderm proliferation and differentiation.

miR17–92 and miR302–367 are both highly expressed during

early lung endoderm development but are significantly downre-

gulated or extinguished by birth (Tian et al., 2011; Ventura et al.,

2008). Several of the miRNAs in these two clusters share com-

mon seed sequences. Overexpression of these miRNA clusters

results in increased lung epithelial proliferation but inhibition of

differentiation with increased expression of progenitor markers

(Lu et al., 2007; Tian et al., 2011). These data suggest that

these miRNAs promote the early lung progenitor phenotype

that is characterized by a highly proliferative, undifferentiated

state. Since miRNAs can be used as small molecule therapeu-

tics, such capabilities could be harnessed to promote lung

regeneration via therapeutic use of miRNA mimics or antimiRs.

A recent study identified hundreds of lncRNAs expressed in the

developing and postnatal lung (Herriges et al., 2014). A signifi-

cant subset of these lncRNAs is located near protein-coding

genes including important transcription factors such as Nkx2-

1 and Foxf1. One of these lncRNAs, called NANCI, regulates

Nkx2-1 and is essential for its expression, as well as that of

targets of Nkx2-1 function including Sftpc and Scgb1a1. Given

the important role for Nkx2-1 in lung development and

postnatal homeostasis, lncRNAs such as NANCI likely play a

similarly important role in postnatal lung homeostasis and

repair.

Importance of the Immune Response to Lung
Injury Repair
The lung contains an important population of mesodermal cells

that arise from the hematopoeitic lineage but reside for signifi-

cant periods within the lung parenchyma and within alveoli. Sig-

nificant evidence is emerging for a complex orchestration by

these cells during repair and regeneration. Recent live-imaging

approaches have highlighted resident populations of neutrophils

and monocytes at sites of alveolar injury and highly localized

damage in response to either ischemia reperfusion or TLR

signaling (Kreisel et al., 2010; Looney et al., 2011). While imme-

diate damage is likely a product of neutrophil extravasation

and perhaps myeloid-mediated breakdown of alveolar epithe-

lium, the immune response is also likely protective. For example,

alveolar CD11c+ cells (macrophages and dendritic cells) utilize

Connexin 43 (Cx43)-mediated tight junctions to communicate

with the epithelium and participate in calcium waves that propa-

gate across damaged epithelium. Interactions of some CD11c

cells in this way are apparently protective because CD11c-

driven deletion of Cx43 resulted in augmented damage in

response to TLR signals (Westphalen et al., 2014). It remains to

be determined whether myeloid cells with a more ‘‘M2’’ pheno-

type associated with TGFb and IL-10 production have specific
roles in injury/repair, and indeed whether macrophage function

in the lung falls under the control of the adaptive immune

response. Early data using mice that are partially depleted for

regulatory T cells indicated that these cells regulated the resolu-

tion of lung injury, but the mechanism and extent of this remains

unclear (D’Alessio et al., 2009).

Bioengineering Lung Tissue
The current clinical approach for replacement of diseased lung

tissue is allogeneic lung transplantation. However, this proce-

dure remains limited due to a relative shortage of donor organs,

immunologic rejection by the recipient, and complications due to

intense immunosuppression necessary to avoid rejection (Lau

et al., 2004). In the United States, 5-year patient survival after

lung transplantation is approximately 50%, compared to about

70% for liver (Wang et al., 2014).

Engineered Tracheal Replacements

Engineered airways (trachea and bronchi) have been in use for

over a decade, the first being designed to repair a tracheobron-

chial anastomosis after surgery for malignancy (Macchiarini

et al., 2004). Since this initial report, fully engineered tracheal

segments have beenmade using cadaveric donor decellularized

matrices, upon which recipient-derived cells were cultured to

generate an autologous airway graft to repair tracheobronchial

malacia (Macchiarini et al., 2008). Synthetic scaffolds have also

been explored for use as tracheal replacements. Clinical trials

of solid prostheses have included materials such as stainless

steel (Cotton et al., 1952), steel coil (Beattie et al., 1956), silicone

(Neville et al., 1990), polyethylene (Clagett et al., 1952), Teflon

(Ekestrom and Carlens, 1959), and hydroxylapatite (Hirano

et al., 1989). However, most solid prostheses eventually fail to

become well integrated with the surrounding tissue and cause

problems with infection, dislodgement, migration, and obstruc-

tion with granulation tissue (Grillo, 2002).

Whole-Lung Engineering

More recently, whole-lung engineering has been attempted,

albeit in animal models only (Ott et al., 2010; Petersen et al.,

2010). These approaches make use of whole-lung decellulariza-

tion strategies (Price et al., 2010) followed by reseeding airways

and vessels with primary epithelial and vascular endothelial cells,

respectively, from syngeneic animals. After culture within a

bioreactor, the organs were reimplanted into syngeneic recipi-

ents and demonstrated efficient gas exchange (Ott et al., 2010;

Petersen et al., 2010). However, the lungs ultimately fail after

several hours to days due to a combination of intravascular

coagulation (likely due to incomplete endothelialization of the de-

cellularized vasculature) and defects in barrier function leading

to exudation of fluid into the airways.

More recently, strategies for decellularizing whole lungs from

pigs, nonhuman primates (Bonvillain et al., 2013), and humans

(Booth et al., 2012) have been established that pave the way

for recellularization studies (Gilpin et al., 2013; Nichols et al.,

2013; Wagner et al., 2014). Although these scaffolds provide

anatomic access to the airway and vascular compartments,

one key challenge will be delivery of mesenchymal populations

to the interstitium and particularly the delicate septa. Regionally

specific mesenchymal populations, coupled with distinct extra-

cellular matrix cues (Hinenoya et al., 2008; Sannes, 1984), may

significantly enhance the outcomes of epithelial repopulation of
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decellularized matrices. However, the complexity of human lung

will make this a daunting task for many years to come.
Conclusions
Much progress has beenmade in recent years in defining the cell

lineages that contribute toward lung repair and regeneration. The

focus of most of this work has been on the epithelium, given its

essential function in the lung. However, other cellular constitu-

ents, including the lymphatic and vascular systems as well as

the immune system, almost certainly play important roles in

repair and regeneration. Determining their contribution is an

important area of future research.

Recent evidence suggests that lung epithelial lineages that un-

dergo long-term self-renewal and differentiation are themselves

functionally differentiated cells. Examples are Scgb1a1+ Club

cells and Sftpc+ AEC2s. Moreover, these and other epithelial

cells can undergo phenotypic switches in response to tissue

damage and the response can vary according to the type and

severity of injury. These concepts have had an important impact

on our understanding of stem/progenitor biology, not only in the

lung but in other tissues as well (Blanpain and Fuchs, 2014). How

this plasticity is regulated is an exciting area of inquiry.

The identification of stem/progenitor lineages and activity in

the adult lung has proceeded much faster than our understand-

ing of the molecular pathways that regulate their cell behavior.

The concept that developmental pathways are reactivated and

play important roles in lung repair and regeneration requires

additional testing, especially in more physiologically or clinically

relevant models such as influenza injury. These studies will

require additional information on how structures are formed in

the lung, in particular the process of alveologenesis, which is still

poorly understood. This is a topic that will greatly benefit from

additional research into the development and maturation of the

lung. Importantly, the advent of new ex vivo models of lung

stem cell activity such as tracheospheres and alveolospheres

should allow for testing of factors that can promote either

stem/progenitor self-renewal or differentiation.

New techniques such as a functional engraftment assay are

also critical for testing the true ability of different stem/progenitor

lineages that have been and will continue to be identified in the

lung. This will entail a better understanding of the niches that

lung stem/progenitor cells reside in, which will include defining

the role of extracellular matrix and an improved understanding

of cell-cell signaling mechanisms important for regional cell

behavior after injury or in disease. All of these outstanding issues

will require a renewed commitment to basic science as well as

the ongoing push to better understand how animal models can

be used to understand human lung disease and regeneration.

Much has been gained from an investment into basic lung devel-

opment and there remains much still to be discovered. Only by

combining the strength of such basic studies along with explora-

tion of how the human lung responds to injury and insult can the

field develop new strategies and therapies for combating human

lung disease.
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