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Trefoil factors (TFFs) are small secreted proteins that regulate tissue integrity and repair at mucosal
surfaces, particularly in the gastrointestinal tract. However, their relative contribution(s) to controlling
baseline lung function or the extent of infection-induced lung injury are unknown issues. With the use
of irradiation bone marrow chimeras, we found that TFF2 produced from both hematopoietic- and
nonhematopoietic—derived cells is essential for host protection, proliferation of alveolar type 2 cells,
and restoration of pulmonary gas exchange after infection with the hookworm parasite Nippostrongylus
brasiliensis. In the absence of TFF2, lung epithelia were unable to proliferate and expressed reduced
lung mRNA transcript levels for type 2 response-inducing IL-25 and IL-33 after infectious injury.
Strikingly, even in the absence of infection or irradiation, TFF2 deficiency compromised lung structure
and function, as characterized by distended alveoli and reduced blood oxygen levels relative to wild-
type control mice. Taken together, we show a previously unappreciated role for TFF2, produced by
either hematopoietic or nonhematopoietic sources, as a pro-proliferative factor for lung epithelial cells
under steady-state and infectious injury conditions. (Am J Pathol 2018, B: 1—10; https://doi.org/
10.1016/j.ajpath.2018.01.020)

Coordination of host immunity and tissue repair after
infection involves a diverse array of secreted and
cell-associated molecules. Indeed, mucosal cytokine
production at sites of injury caused by pathogens, chemicals,
and/or abrasions has a major impact on the healing process."
TFF family proteins (TFF1 to TFF3) are reparative proteins
secreted at sites of injury that drive epithelial migration over
areas of denuded basement membrane,” promote cytoskeletal
rearrangement, and inhibit apoptosis.®* Even though trefoils
are well-documented regulators of gastrointestinal injury,””’
their role(s) in extraintestinal sites such as bladder, brain,
intestine, oral cavity, kidney, liver, spleen, thymus, and lung
are less well understood.® '

Lung pathologic processes induced by allergic asthma,
worm infection, smoking, tumorigenesis, chronic obstructive
pulmonary disease, and naphthalene-induced lung injury all
induce TFF2 production by epithelial cells."*~'” TFF2 and
TFF3 can function in synergy with epidermal growth factor

receptor signaling to promote bronchial epithelial cell
migration'® and coexpression of TFFI and TFF2 in Clara
cells after acute lung injury suggests that they may contribute
to tissue regeneration.'” Of interest, a genetic screen identi-
fied TFF2 as a potential regulator of pulmonary function,*’*!
but no evidence has found that it is important for gas
exchange, tissue regeneration, or baseline lung architecture
under steady-state or postinjury conditions.

Both pulmonary and intestinal epithelia produce TFF2 in
the context of type 2 inflammation caused by allergen or
hookworm infection.'” However, the role of TFF2 as a
driver or suppressor of allergic lung pathologic process is
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controversial.'®**> Moreover, although TFF2 expression in

epithelial cells is well known, recent evidence shows that
TFF2 is also expressed more broadly in the hematopoietic
compartment, including CD4" T cells and peritoneal
macrophages.”> To determine whether hematopoietic- or
nonhematopoietic—derived TFF2 was important for the
production of type 2 cytokines, worm clearance, and/or
restoration of lung function after infection-induced tissue
damage, we turned to a Nippostrongylus brasiliensis
infection model, which partially recapitulates the transient
lung damage caused by human worm infections.”* Data
show that hematopoietic-derived TFF2 is essential for
hookworm-induced TFF2 production, host immunity, and
the proliferation of alveolar type 2 cells after lung injury.
Nonhematopoietic-derived TFF2 was also important for
host immunity and lung tissue repair. Unexpectedly, even
under homeostatic conditions without deliberate tissue
damage, we found that loss of TFF2 significantly reduced
pulmonary function compared with wild-type (WT) mice.
Taken together, these data reveal an unexpected role for
TFF2 as an essential part of lung tissue maintenance and
restoration after infection in mice.

Materials and Methods

Mice and N. brasiliensis Model

All mice, including WT C57BL/6, C57BL/6 Ly5.1 (BoyJ),
TFF2-deficient mice (previously backcrossed for eight gen-
erations to C57BL/6), and chicken actin—cyan fluorescent
protein (CFP) transgenic mice have been previously
described.”> Mice were bred in house in a fully equipped
specific pathogen-free barrier facility, staffed, and maintained
according to the guidelines specified by the pertinent state and
federal regulations for vivaria at University of California at
San Francisco or University of Pennsylvania. All procedures
were reviewed and approved by Institutional Animal Care
and Use Committee at University of California at San
Francisco (protocol AN109782-01) or the University of
Pennsylvania (protocol 805911). Sex-matched naive mice
aged between 6 and 12 weeks were subcutaneously
inoculated with 500 to 750 infective stage larvae collected
from 7-day—old coprocultures maintained in the laboratory at
25°C. Parasites collected in sterile 1x phosphate-buffered
saline that contained penicillin/streptomycin were washed
several times through repeated centrifugation before inocu-
lation. Infected mice were euthanized by carbon dioxide
narcosis at 9 days after inoculation unless specified otherwise.
Adult worms were collected from the entire length of the
small intestine opened longitudinally spanning the duodenum
to proximal ileum and placed into a Baermann apparatus, and
all of the adult worms collected after 2 to 3 hours were
counted under a stereo-microscope at x5 magnification.
Bone marrow (BM) chimeras were generated between
TFF2-deficient and CD45.1 age- and sex-matched strains
randomly assigned as donors or recipients. The recipients

were irradiated with 10 Gy administered as a split dose and
were retro-orbitally inoculated with 2 to 5 x 10° total BM
cells isolated from the femurs of the donor animals within 1
hour after the second dose of irradiation. All irradiated
recipients were administered 1% enrofloxacin for 2 weeks
after irradiation and were evaluated for chimerism efficiency
at 6 to 8 weeks after transfer. Only animals that showed >90%
donor chimerism were used for subsequent data analysis.

Pulse Oximetry

Pulse oximetry of mice were measured with MouseOx Plus
with small CollarClip (both from Starr Life Sciences Corp.,
Oakmont, PA). Hair from the sensor site on the mice was
removed 1 day before oximetry as the manufacturer’s
manual suggested. On the day of measurement, mice were
either restrained or lightly anesthetized with ketamine/
xylazine, and 1 minute of error-free data were recorded and
used in analysis. No significant differences were observed in
the data readings between these two methods. Mice were
kept on a heating pad (37°C) during oximetry to avoid
hypothermia. Results were presented as raw oxygen
saturation (SpO,), which was a readout from MouseOx
Plus, or normalized to baseline SpO,, followed by calcula-
tion of the percentage of change from the initial reading in
the same animal. For hookworm infection studies, mice
were tattooed to ensure longitudinal data collection.

Vital Imaging of Lung Slices

For vital laser scanning confocal imaging, sections of lungs
400 pm thick were prepared as previously described.”
Briefly, mice were euthanized with a lethal dose of 1.3%
tribromoethanol (Avertin; Sigma-Aldrich, St. Louis, MO)
and exsanguinated. Exposed lungs were then intratracheally
inflated with 1.2 mL of 37°C 2.0% low melting temperature
agarose (Fisher Scientific, Hampton, NH), and solidified
with cold phosphate-buffered saline (§8°C to 12°C). The left
lobes were isolated, sliced into thick sections (400 wm) with
a Leica Vibratome VT1000S (Wetzler, Germany), mounted
on plastic coverslips with the use of Vetbond (3M, Maple-
wood, MN), and then imaged on a temperature-controlled
stage (Warner Instruments, Hamden, CT) maintained at
37°C, while in constant perfusion with oxygenated (95%
0,; 5% CO,) RPMI without phenol red. Images were
acquired with a Nikon AI1R microscope (Tokyo, Japan)
equipped with an automated Prior XY stage, according to
the manufacturer’s protocol and software, and the parame-
ters described here. For excitation a 5-W 740- to 1000-nm
tunable MaiTai HP (Newport, Santa Clara, CA) laser was
used. A 20 x 0.95 N.A. water-immersion objective
(Olympus XLUMPLFLN 20XW; Olympus, Tokyo, Japan)
was used, and a spatial resolution of 1.13 pum/pixel was
achieved. Two micron Z-depth per plane was used for
three-dimensional imaging. Images were recorded with the
galvanometer-based scanning mode. For CFP excitation, the
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laser was tuned to 900 nm and a 450/50 nm emission band
pass was used. Images were analyzed with Imaris (Bitplane,
Concord, MA) and Matlab (Math Works, Natick, MA). For
evaluating alveolar cross-sectional area, individual sections
of 200 x 200 x 50 um® from the three-dimensional imaging
volume were selected, and alveolar area was calculated as
the area of contiguous dark space or the absence of CFP
with the use of Matlab scripts for each plane in the
three-dimensional volume by using a cutoff >2000 pm?>.

Quantitative Real-Time PCR

Total RNA was harvested from lung or intestinal tissues with
the use of RNeasy Mini kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol. Total RNA (500 ng)
was reverse-transcribed with Superscript II (Invitrogen,
Carlsbad, CA) according to the manufacturer’s protocol. One
to four diluted cDNA samples were added to SsoAdavanced
SYBR Green Supermix (Bio-Rad, Hercules, CA), and real-
time PCR reactions were run on CFX96 Real-Time PCR
detection system (Bio-Rad). Gene expression is normalized to
Gapdh, and data are presented as means = SEM from the
replicates. Primers used in this study included the following:
Gapdh forward: 5'-AGGTCGGTGTGAACGGATTTG-3,
and reverse: 5-TGTAGACCATGTAGTTGAGGTCA-3';
1125 forward: 5'-GCTGTTGCTGAAGAAGGTAGT-3/, and
reverse: 5-TTCAAGTCCCTGTCCAAC-3'; Ii33 forward: 5'-
TCCCAACAGAAGACCAAAG-3, and reverse: 5'-GATA-
CTGCCAAGCAAGGAT-3'"; Retnla forward: 5'-GGATGC-
CAACTTTGAATAGG-3/, and reverse: 5-GCACACCC-
AGTAGCAGTC-3'); Remlb forward: 5'-GATACTGC-
CAAGCAAGGAT-3, and reverse: 5'-AACACAGTGTAG-
GCTTCATGCTGTA-3"; Spc forward: 5'-AGCAAAGAGG-
TCCTGATGGA-3, and reverse: 5'-ATGAGAAGGCGTTT-
GAGGTG-3'; and Ifng forward: 5'-GTGGCATAGATGT-
GGAAGAA-3', and reverse: 5-GCTGTTGCTGAA-
GAAGGTAGT-3'.

Flow Cytometry

The following antibodies were purchased from BioLegend
(San Diego, CA): rat anti-mouse CD31 (clone 390), rat
anti-mouse CD45 (30-F11), rat anti-mouse CD49f/a6 integrin
(GoH3), rat anti-mouse CD104/B4 integrin (346-11A), rat
anti-mouse F4/80 (BM8), and rat anti-mouse CD326/epithelial
cell adhesion molecule (EpCAM; G8.8). Hamster anti-mouse
Podoplanin/T1a (eBio8.1.1), rat anti-mouse CD11b (M1/70),
hamster anti-mouse CD11c (N418), rat anti-mouse [-A/I-E
(M5/114.15.2), hamster anti-mouse CD103 (2E7), and rat anti-
mouse Sca-1 (D7) were purchased from eBioscience (San
Diego, CA). Cell viability was determined by LIVE/DEAD
Fixable Aqua Stain (Life Technologies, Carlsbad, CA) and
Annexin V (BD Biosciences, San Jose, CA). Rat anti-mouse
Siglec-F (E50-2440) was purchased from BD Biosciences.
Flow cytometry was performed on LSRII machine (BD
Biosciences) with BD FACSDiva software.

The American Journal of Pathology m ajp.amjpathol.org

Enzyme-Linked Immunosorbent Assay

Mouse lungs were lavaged with 1 mL of phosphate-buffered
saline during necropsy. After centrifugation at 1500 rpm for
5 minutes the supernatants were stored at —80°C before
enzyme-linked immunosorbent assay. Mouse Trefoil Factor
2 ELISA (enzyme-linked immunosorbent assay) kit was
purchased from United States Biological (Swampscott,
MA).

Statistical Analysis

Sample sizes were not determined statistically before
experiments. All mice were randomly assigned to experi-
mental or control groups. All data shown are means and
SEM from four to six mice per group unless otherwise
indicated. Experiments were repeated at least twice with
representative data shown. Grubb’s test was performed for
each data set to exclude outliers. For comparison unpaired
t-test was used to compare two groups and one-way analysis
of variance was used to compare three or more groups.
Two-way analysis of variance was used to compare data
from repeated measures of same animals for longitudinal
analysis. Statistics were performed with GraphPad Prism
version 6 (GraphPad Software, Inc., La Jolla, CA). In all
cases P < 0.05 was considered statistically significant.

Results

Hematopoietic Cell—Derived TFF2 Serves an Important
Role in Host Defense after Infection with the
Hookworm Parasite N. brasiliensis

Previous demonstration that TFF2 deficiency caused
myeloid cytokine dysregulation, combined with evidence
that TFF2 can be expressed in CD4™ T cells,'”** prompted
us to interrogate whether hematopoietically derived TFF2
plays a critical role in the immune response and/or resolu-
tion of lung pathologic processes after N. brasiliensis
infection. To address this question, irradiation BM chimeras
were generated between WT (CD45.1) and Tﬁ‘Zﬁlf
(CD45.2) strains [WT—WT capable of producing both
hematopoietically and nonhematopoietically derived TFF2,
knockout (KO)—WT only capable of producing non-
hematopoietically derived TFF2, WT — KO only capable of
producing hematopoietically derived TFF2, and KO —KO
unable to produce TFF2]. Six weeks after lethal whole-body
irradiation (10 Gy) and BM reconstitution (Figure 1A),
>95% donor chimerism was confirmed in peripheral CD4 ",
B220", and CD11b" populations (Figure 1, B—D) as well
as alveolar macrophages defined as CD45", CDI1 Ict,
CD64™, and Siglec-F* by flow cytometry with the use of
monoclonal antibody specific for the congenic markers
CD45.1 (WT) and CD45.2 (TFF2™'") (Figure 1, E—G) in
all combinations tested. Therefore, TFF2 deficiency did not
have a negative impact on BM engraftment.
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/\\é /{9 /'é\ /;l- brasiliensis infection (G). KO, knockout; N.b., N. brasiliensis.
AN

To test for the relative importance of hematopoietically
versus nonhematopoietically derived TFF2 in gastrointes-
tinal host defense, the chimeric mice were inoculated with
the infectious stage larvae of the hookworm parasite N.
brasiliensis. WT— WT chimeras were significantly better
protected than any other chimeric combinations at day 9
after infection, as evidenced by reduced worm burden
(Figure 2A). Congruent with a host protective response, it
was found that resistin-like molecule (RELM)B intestinal
mRNA transcripts were twofold to threefold higher in the
WT— WT chimeras than in chimeric mice lacking hema-
topoietically derived TFF2 (KO — WT), nonhematopoieti-
cally derived TFF2 (WT—KO), or both (KO—KO)
(Figure 2B).

TFF2 deficiency impaired /L33 mRNA induction in
myeloid antigen-presenting cells, suggesting that TFF2 may
be an important modulator of type 2 responses.'> To further
investigate whether type 2 cytokine expression was impaired
by TFF2 deficiency in hematopoietic or nonhematopoietic
cells, lung mRNA transcripts were evaluated at day 9 by
quantitative real-time RT-PCR. Transcripts for //33 and 1125
were uniformly reduced in TFF2-deficient chimeras
(Figure 2, C and D), whereas Retnla transcripts were twofold
lower only in KO — KO and KO — WT chimeras compared

with WT—WT chimeras (Figure 2E). Conversely, lung
transcripts for Ifng, the signature gene of type 1 responses,
were most highly expressed in KO — KO chimeras, followed
by KO — WT chimeras, and the lowest levels were observed
in the WT — KO and WT — WT groups (Figure 2F). Thus,
these data suggested that both hematopoietically and
nonhematopoietically derived TFF2 regulate worm expulsion
and substantially affect the balance between type 1 and type 2
responses during hookworm infection.

TFF2 from Either Hematopoietic or Nonhematopoietic
Sources Protects against Hookworm-Induced Lung
Pathologic Processes

Next, it was tested whether TFF2 was required for repair of
damaged lung tissue, and, if so, whether hematopoietic or
nonhematopoietic sources were important. Lung damage in the
infected cohorts of WT—WT, KO—WT, WT—KO, and
KO — KO chimeric mice infected as described in Mice and N.

brasiliensis Model was evaluated by pulse oximetry and his- @i

tologic assessment of formalin-fixed, paraffin-embedded—in-
flated lungs. Data show a similar SpO, nadir at day 3 among
strains, reflective of the peak of hookworm-induced lung
injury. However, the rebound in SpO; levels at day 9 that was
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Figure 2  Defective worm expulsion, gastrointestinal resistin-like molecule B expression, and innate type 2 cytokine production in Nippostrongylus bra-

siliensis—infected chimeras lacking hematopoietically or nonhematopoietically derived trefoil factor 2. A and B: Numbers of N. brasiliensis adult worms
recovered from the intestinal lumen (A) and Retnlb mRNA transcript levels within the jejunum of irradiation bone marrow chimeras at 9 days after infection
(B). C—F: Quantitative lung mRNA expression levels of I/33 (C), Il25 (D), Retnla (E), and Ifng (F) on day 9 after N. brasiliensis infection. Data are expressed as
means + SEM with each symbol representing one mouse. *P < 0.05, **P < 0.01 (one-way analysis of variance). KO, knockout; WT, wild-type.

observed in the WT — WT chimeras was significantly blunted
in the KO—WT and KO—KO chimeras and partially

o2 [p3]impaired in the WT — KO chimeras (Figure 3, B and C). The

Q13

histologic features of N. brasiliensis—infected lung tissues
corroborated the persistent defects in gas exchange, with
equivalent injury at day 3 (not shown), but persistent areas of
denuded distal lung space lacking alveoli within both
KO— WT and KO— KO chimeras (Figure 3D). Quantifica-
tion of lung damage by using mean linear intercept revealed a
significant reduction in KO— WT and KO— KO chimeras
compared with the WT — WT group (Figure 3E). Intriguingly,
significant differences in the number or quality of inflamma-
tory cell infiltration in bronchoalveolar lavage fluid among
chimeras and WT mice were not observed, although KO mice
had reduced numbers of eosinophils and lymphocytes
(Figure 3F). These data indicated a necessary role for both
hematopoietically and nonhematopoietically derived TFF2 in
the repair of lung tissue damaged by hookworm larvae.

TFF2 Is Important for Epithelial Replenishment after
Lung Injury Caused by N. brasiliensis Infection

It was next determined whether the impaired SpO, rebound
and increased lung damage observed in TFF2-deficient mice
were associated with defects in epithelial cell turnover. To
identify S-phase lung epithelia, mice were administered
bromodeoxyuridine (BrdU) 24 hours before euthanasia, and

The American Journal of Pathology m ajp.amjpathol.org

distal lung epithelia were evaluated with flow cytometry to
calculate the percentage of BrdU™" cells. WT — WT chimeras
had higher percentages of EpCAM " BrdU™ cells that were also

pro-SpC™ [surfactant-associated protein C; alveolar type 2 ou

(ATII) cells] compared with chimeras lacking TFF2 in either
the hematopoietic or nonhematopoietic compartment

(Figure 4, A and B). In addition, the total number of EpCAM ™ [F4]

cells recovered from the distal lung compartment was higher in
the WT — WT chimeras than in all other TFF2-deficient chi-
meras (Figure 4C). Real-time PCR analysis was used to
confirm higher lung mRNA transcripts for Spc (lineage marker
for ATII cells) in WT — WT lung compared with expression
levels in WT—KO and KO— KO chimeras (Figure 4D).
These data implied an essential role for TFF2 for maintaining
the ATII cell population in the lung after hookworm injury.

TFF2 Deficiency Leads to Reduced Gas Exchange and
Abnormal Alveolar Architecture during Homeostasis

KO — KO chimeras consistently fared worse than all other
chimeras after hookworm infection. Even under baseline
conditions, the SpO, levels in KO—KO chimeras were

moderately lower than that of the other chimeras (Figure 5A). [F5]

Given that quantitative trait loci mapping studies in mice
identified TFF2 as one of several genes linked to baseline lung
function,zo’21 it was tested whether TFF2 deficiency, even in
the absence of infectious injury, compromised lung function,
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hematopoietic sources contribute to trefoil factor
(TFF)2 production, raw oxygen saturation (Sp0,)
changes, and pathologic processes after Nippos-
trongylus brasiliensis infection. A: TFF2 levels in
bronchoalveolar (BAL) fluid harvested from mice at
indicated time points after N. brasiliensis infec-
tion. B and C: Percentage of change (ASpO,)
caused by infection at 3 (B) or 9 (C) days after
infection. D: Stitched images of lung tissues from
chimeric mice at day 9 after N. brasiliensis infec-
tion. The arrowheads indicate areas of denuded
distal lung space. E: Lung images (day 9) were
taken and stitched as in A and were analyzed with
AGI script. F: Differential counts of cells recovered
from BAL on day 9 after N. brasiliensis infection.
Data are expressed as means + SEM with each
symbol representing one mouse. n = 8 to 10 mice
per group (A); n = 4 mice per group (E); n = 4 to
6 mice per group (F); n = 4 independent experi-
ments (F). *P < 0.05, **P < 0.01 (analysis of
variance). Scale bars = 0.8 mm. Original magni-
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and/or architecture. As expected, comparison of naive WT
and TFF2~/~ hematoxylin and eosin—stained lung tissues
revealed that TFF2 ™'~ alveoli were larger than WT alveoli
(Figure 5B). To more easily visualize alveolar structure by
confocal microscopy, Tff2-deficient mice were intercrossed
with CFP transgenic mice”” to facilitate quantification of lung
architecture by quantitative assessment of pixel intensity.
Actin-CFP transgenic (WT) and TFF2™~ actin-CFP trans-
genic mice were evaluated at 6 to 10 weeks of age, and total
CFP signal was used to quantitate alveolar cross-sectional
area within equal distal lung volume (200 x 200 x 50
um?>). Notably, this analysis revealed that TFF2 deficiency
caused a striking increase in the frequency of large diameter
alveoli compared with WT alveoli (Figure 5C). Measurement
of SpO, levels corroborated this architectural defect, as
shown by significantly reduced baseline levels in TFF2-
deficient mice compared with WT mice under steady-state
conditions (Figure 5D). Interestingly, a significant reduction

was found in the number of distal lung epithelia recovered
from TFF2-deficient mice compared with WT mice.
Although no increase was observed in the proportion of
apoptotic cells in the CD45~ EpCAM™ population (data not
shown), EPCAM™ cells had lower expression of a6 B4
integrin (Figure 6, A and B), a component of the
hemidesmosome that tethers epithelia to basement membrane
(Figure 6, C—F). Taken together, these data indicated that
TFF2 promotes baseline lung function, promoted epithelial
proliferation, and aided epithelial attachment in the
pulmonary tract.

Discussion
TFF proteins are among the secreted factors that regulate

tissue integrity and repair at mucosal surfaces, particularly
in the gastrointestinal mucosa. Here, we demonstrate the
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importance of TFF2 as a regulator of distal lung architecture
and gas exchange function. Loss of TFF2 from either
hematopoietic or nonhematopoietic cells caused a reduction
in type 2 cytokines (1125, 1I33), promoted Ifng expression,
and abrogated epithelial cell proliferation after hookworm
infection. Loss of TFF2 from all cells resulted in a marked
disruption of the distal lung architecture that somewhat
resembled emphysematous bullae, marked by a significant
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reduction in baseline blood oxygen content. Taken together,
these data implicate TFF2 as an important regulator of
pulmonary repair that can be derived from hematopoietic
sources and that is important for maintaining mucosal
homeostasis.

With the use of models of N. brasiliensis and house dust
mite—induced type 2 responses, we previously demon-
strated that TFF2-deficient mice have an early defect in the

Figure 5  Trefoil factor 2 (TFF2) deficiency re-
sults in abnormally enlarged alveoli and hypoxia at
the steady state. A: Measurement of baseline
blood oxygen levels (Sp0,) in chimeras at 6 to 8
weeks after bone marrow reconstitution. B:
Representative photomicrographs of airway and
distal lung space within naive wild-type (WT) and
TFF2~/~ mice at 6 to 8 weeks of age. Light mi-
croscopy images show paraffin-embedded hema-
toxylin and eosin—stained lung tissue (left) and
laser-scanning confocal micrograph showing z-
projection of gray-scale images from distal lung
tissues (50-um thick) of WT x actin—cyan fluo-
rescent protein (CFP) transgenic mice versus Tff2
/= X actin-CFP transgenic naive mice (right).
Arrowheads indicate alveolar space. C: Quantifi-
cation of alveolar cross-sectional area in B. Each
point represents area of individual alveoli. D:
Measurement of baseline Sp0, in WT or Tff2~/~
mice at 6 to 8 weeks of age. Each symbol repre-
sents 1 mouse (A and D). n = 3 independent
experiments (C). *P < 0.05 (one-way analysis of
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Oo variance); 1P < 0.01, {{P < 001 (unpaired t-
©o0 test). Scale bars = 50 pm. Original magnification,
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production of IL-33 and as a result show impaired
IL-13—dominated inflammatory ~responses.' IL-33, a
prototypical alarmin cytokine, is thought to be primarily
produced by epithelial cells after tissue damage.” In addition
to epithelial cells, macrophages and inflammatory dendritic
cells isolated from TFF2-deficient mice have compromised
IL-33 expression.' Myeloid-derived IL-33 has been reported
by several other groups in the setting of allergic disease.”
Herein, we show by using irradiation BM chimeras that
both /125 and 1133 expression levels were reduced in lung
myeloid cells from mice lacking BM-derived TFF2. In
addition, there was a selective reduction in Retlna, which is
characteristic of M2/alternatively activated macrophages, in
mice lacking BM-derived TFF2. Together, this suggests that
paracrine or autocrine signaling of TFF2 in hematopoietic
cells favors type 2 responses. Congruent with this inter-
pretation, expression levels for Ifig, the prototypical type 1
inflammatory cytokine, were highest in the lungs of mice
lacking TFF2 in all cells and were also significantly elevated
in mice lacking either BM- or non-BM—derived TFF2
compared with WT chimeras. Our data are consistent with a
demonstration that //33 expression was significantly reduced
in the gastrointestinal tract of TFF2-deficient animals during
dextran sulfate—induced colitis’ and previous reports of
TFF2-deficient animals producing enhanced proin-
flammatory cytokines (Ifng and 1115).%’

Data suggest that TFF2 promotes type 2 macrophage
responses and reduces type 1 responses. Although it has been
shown that TFF2 deficiency leads to an enhanced M1/classi-
cally activated macrophage phenoptype,® rTFF2 treatment that
directs macrophages to adopt an M2 phenotype in vitro could
not be demonstrated (data not shown). Such results suggest that
TFF2 effects on macrophages may be indirect. Because a
receptor for TFF2 has not yet been identified, determining the
cellular targets of TFF2 signaling remains challenging. It has
been reported that CXCR4 may function as a low-affinity
receptor for TFF2 in epithelia and lymphocytes,” but it was
found that myeloid-specific CXCR4-deficient mice (LysM-
Crecxcra™®19%) had no defects in type 2 immunity or worm
expulsion during N. brasiliensis infection (data not shown).
Further functional studies will be greatly aided by definitive
identification of the TFF2 receptor.

The hematopoietic cell(s) sources of TFF2 were not
formally identified in this study, but could be of myeloid
lineage (macrophage) or lymphoid lineage (CD4" T
cells).”"" Tissue macrophages, which are widely accepted
as central players in wound healing/tissue repair processes,
express TFF2 transcripts, but the functional importance of
myeloid-derived TFF2 awaits further study. Recently,
Dubeyovskova et al'’ demonstrated that mature memory-
like CD4" T cells could produce TFF2, which is not
entirely without precedent, given that T regulatory cells and
T helper 2 effector cells can produce amphiregulin, an
epidermal growth factor receptor agonist and pro-repair
molecule.''™"°  We  speculate that hematopoietic
cell—derived TFF2 may function similar to amphiregulin,

The American Journal of Pathology m ajp.amjpathol.org

given that TFF2-mediated epithelial migration partially re-
quires an intact epidermal growth factor receptor. Future
studies will need to discern whether TFF2 is an important
product of tissue macrophages, innate lymphoid cells, and/
or Foxp3™ T regulatory cells.'* '

In the first 3 days of infection, hookworm larvae cause
hemorrhagic injury to lung parenchyma because of larval
migratory behavior and their secreted proteolytic enzymes.
Loss of either BM- or non-BM—derived TFF2 exacerbated
lung pathologic processes and impaired the proliferative
expansion of lung epithelia during the repair phase. Type II
alveolar epithelial cells, which coexpress EpPCAM and sur-
factant protein C, function as progenitors in the distal lung
compartment.'” Loss of either BM- or non-BM—derived
TFF2 reduced both the number and percentage of ATII cells
in S phase at day 9 after infection. This time point is 6 days
after worm egress from the lung and likely corresponds to a
period of peak lung healing, based on the high levels of type
2 cytokine production at this time.'® Moreover, at 9 days
after infection, WT mice completely recover their initial
blood oxygen levels and have threefold to fourfold greater
numbers of S-phase ATII distal lung epithelia than all other
chimeric strains, consistent with increased Spc expression
levels in WT—WT chimeras relative to KO—WT or
KO — KO chimeras. Scott and colleagues' > and Marsland
et al”' demonstrated that the architectural defects caused by
hookworm infection last for >1 year and that local lung M2
cell activation persists during this time, despite the
continued emphysematous changes. However, none of these
studies evaluated the percentage or number of proliferating
epithelia or blood oxygen content before or after hookworm
infection.”' From our findings, we surmise that TFF2 drives
local epithelial proliferation to rapidly restore the lung
function and blood oxygen levels despite ongoing archi-
tectural defects. The possibility that the dysregulation of
inflammation in the absence of TFF2 also contributed to the
reduced SpO, levels and that this reduction was not solely
due to architectural defects from reduced epithelial prolif-
eration cannot be ruled out.

Despite the widespread notion that M2 cells promote
wound healing, few studies have demonstrated that re-
epithelialization is macrophage dependent.”” One recent
study demonstrated that co-culture of ATII cells and BM-
derived macrophage yielded more colony-forming units
than when ATII cells are cultured alone.”> Our work pro-
vides a potential mechanism to explain how that could
occur, in as much as secreted macrophages (or other he-
matopoietic cells) may have an important role in promoting
lung repair.>* Given that alveolar macrophages are in close
contact with ATII epithelial cells in vivo, we speculate that
alveolar macrophages facilitate epithelial proliferation and
tissue repair through a TFF2-dependent mechanism.

Interestingly, even in the absence of infectious injury or
irradiation, TFF2 deficiency in mice led to a striking reduc-
tion in cell number within the distal lung compartment. This
reduced cell number was linked to reduced numbers of
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epithelial cells expressing o6/B4 integrin, an essential
component of the hemidesmosome that tethers epithelia to the
basement membrane. The hemidesmosome facilitates
epithelial cell attachment to basement membrane through
binding laminin, which, in turn, facilitates a cascade of
intracellular events that promote survival, growth, and dif-
ferentiation.”” Indeed, this signaling cascade may partially
underlie the association of TFF2 with tumor cell metastasis.”®

Conclusions

Our work demonstrates a previously unappreciated and
critical role for hematopoietic TFF2 in the development of
type 2 immune responses, host protection, and ATII pro-
liferation. In addition, our demonstration that TFF2 defi-
ciency leads to lung function defects in the absence of
deliberate injury implies a broader role for TFF2 than pre-
viously thought. Together, these findings further emphasize
the importance of identifying and validating molecular
pathways responsible for the downstream effects of this
important mucosal cytokine.
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