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SUMMARY

To mount an immune response, T lymphocytes must
successfully search for foreign material bound to the
surface of antigen-presenting cells. How T cells opti-
mize their chances of encountering and responding
to these antigens is unknown. T cell motility in tissues
resembles a random or Levy walk and is regulated
in part by external factors including chemokines
and lymph-node topology, but motility parameters
such as speed and propensity to turn may also be
cell intrinsic. Here we found that the unconventional
myosin 1g (Myo1g) motor generates membrane
tension, enforces cell-intrinsic meandering search,
and enhances T-DC interactions during lymph-node
surveillance. Increased turning and meandering
motility, as opposed to ballistic motility, is enhanced
by Myo1g. Myo1g acts as a ‘‘turning motor’’ and
generates a form of cellular ‘‘flânerie.’’ Modeling
and antigen challenges show that these intrinsically
programmed elements of motility search are critical
for the detection of rare cognate antigen-presenting
cells.

INTRODUCTION

Search is a universal requirement in many biological systems:

from a predator strategy to locate prey to themeandering search

that T cells undertake to identify foreign peptides presented by

major histocompatibility complex (MHC) molecules on antigen-

presenting cells (APCs). This latter search has been described

as having features of a Brownian random walk (Miller et al.,

2003; Preston et al., 2006) or a Levy walk (Harris et al., 2012).

The efficiency of this random-like motility pattern observed for

T cells in lymph nodes (LNs) has been heavily modeled (Beau-

chemin et al., 2007; Beltman et al., 2009; Textor et al., 2011);
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however, perturbing cellular motility patterns in vivo has not pre-

viously been possible.

To optimize initial detection of antigens, a T cell must balance

migration speedwith the need to dwell in a given location for long

enough to detect bona-fide signaling complexes and become

activated. Furthermore, it must meander sufficiently to fully

explore a region before departing to scan neighboring areas.

The apparently random motility of T cells in tissues may arise

through the combinations of three main mechanisms. First, the

curved underlying stromal network of LNs may guide motility in

convoluted patterns matching these structures (Bajénoff et al.,

2006; Katakai et al., 2004). Second, the LN is seeded with micro-

patterns of highly localized and variable chemokine gradients

(Bromley et al., 2008). Finally, it has been suggested that cell-

intrinsic mechanisms would control T cell interstitial migration

and contribute to tissue surveillance (Mrass et al., 2010), but

direct evidence for this is lacking.

The intrinsic rate of T cell motility is determined by the rate of

actin polymerization (Serrador et al., 1999; Vicente-Manzanares

et al., 2002) coupled with the bundling actions of molecules such

as crosslinked myosin IIA (Jacobelli et al., 2009). Motility under

some (Overstreet et al., 2013) but not all (Friedl et al., 1998;

Jacobelli et al., 2010; Woolf et al., 2007) 3D environments re-

quires the coordinated activity of integrins, presumably to trans-

mit sufficient force to pull nuclei through restrictive spaces or

move against flow. Actin polymerization rate can be inhibited

by tension of the cell membrane (Oster and Perelson, 1987).

Cell-intrinsic control of directional persistence, the tendency

not to turn, is less clear. Although chemokines again may func-

tion as guidance cues, T cells in 3D environments show an

intrinsic propensity to ‘‘weave’’ (Jacobelli et al., 2010), a feature

shared with many other amoeboid cells including neutrophils

(Inoue and Meyer, 2008) and Dictyostelium (Andrew and Insall,

2007; Fukui, 2002). How this plays out in random search strate-

gies such as those undertaken by T cells is yet to be examined.

Class I myosins are the largest group of unconventional myo-

sins (Coluccio, 2008; Kim and Flavell, 2008). They are mono-

mericmotor proteins that interact with actin filaments within cells
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and, through lipid-binding C-terminal domains, associate with

cellular membranes (Greenberg and Ostap, 2013; McConnell

and Tyska, 2010). These associations generate membrane ten-

sion in at least one isoform, myosin 1a (Nambiar et al., 2009).

Additionally, it has been suggested that these motors may act

to sense forces on the membrane and actively oppose them

(Laakso et al., 2008). How this family contributes to cellular

motility remains largely undiscovered.

In this study, we identified myosin 1g (Myo1g) as a prominent

class I myosin motor highly expressed in murine T cells. We

found that Myo1g transiently accumulates in discrete areas at

the plasma membrane of migrating cells or when membranes

are deformed. Although T cells genetically deleted for Myo1g

had global reduction in membrane tension, their homeostatic

tissue distribution and responsiveness to T cell receptor (TCR)

engagement were indistinguishable from wild-type (WT) cells.

However, deficient cells moved faster and straighter. This com-

bination of phenotypes allowed for side-by-side empirical and

in silico modeling of the critical features of T cell search.

Although Myo1g�/� cells covered territory more quickly due to

increased velocities and straighter paths, this ultimately proved

to be a deficit, specifically for detection of rare antigens. This

highlights that random walk motility is tuned in part from within

and generates optimal combinations of speed and local dwell

time.

RESULTS

Myo1g is a hematopoietic specific myosin (Olety et al., 2010;

Patino-Lopez et al., 2010) and themost heavily transcribed class

I myosin in naive CD4 and CD8 T cells (Figure 1A). To understand

the function of this class I myosin in T cells, we used targeted

mutagenesis to generatemice lacking this motor protein (Figures

S1A and S1B available online). Offspring were viable and

healthy, and western blot confirmed the loss of Myo1g protein

(Figure S1C). The cellularity and composition of thymus, spleens,

and LNs from knockout (KO) animals were grossly normal

(Figure S1D and data not shown).

Myosin I isoforms have a prominent role as force-sensitive

motors, are located on cell membranes, and can regulate

membrane tension (Gillespie and Cyr, 2004; Laakso et al.,

2008; Nambiar et al., 2009). We performed tether force assays

that demonstrated that Myo1g deficiency resulted in a dramatic

reduction in the initial force required to pull membrane away from

the cortex as well as a reduction in the force required to continue

elongating a tether (Figures 1B and 1C). Consistent with a direct

effect of Myo1g on membrane tension, a YFP-Myo1g fusion co-

localized with the membrane marker DiD when T cells were

plated onto integrin-coated glass substrates (2D) (Figures 1D

and S1E), suggesting that Myo1g was anchored to the plasma

membrane. However, when T cells were plated in complex 3D

microchannels (Jacobelli et al., 2010), which mimic the spatial

constraints experienced by T cells in vivo, we observed addi-

tional transient local accumulations (Figures 1E and 1F). Enrich-

ment of YFP-Myo1g at the leading edge typically preceded

motility arrest, and accumulation at side edges coincided

with turns; in these cases, the portion of membrane in which

Myo1g had accumulated would ultimately retract, and another
portion of the leading edge dominated the direction of motility

(Figure 1E).

The difference between Myo1g localization during 2D and 3D

migration suggested that Myo1g accumulated in 3D in response

to additional and/or asymmetric pressure generated through

contacts within the 3D environment. Indeed, when we applied

local pressure with a needle tip to cells migrating in a 2D environ-

ment, YFP-Myo1g was recruited to the site of pressure, often

accompanied by accumulation of a membrane-targeted

tdTomato (Figure 1G and Movie S1). The ratio between YFP-

Myo1g and membrane fluorescence intensities was increased

at the site of pressure application (Figures 1H and 1I), suggesting

that Myo1g accumulation was not solely due to membrane

accumulation. Consistent with this, transient accumulation dur-

ing 3D migration required a functional motor domain of Myo1g

(Figure S3B).

To test whether Myo1g controls T cell migration in a 3D envi-

ronment, we used microchannels. These channels give control

over confinement and adhesiveness (Jacobelli et al., 2010) while

eliminating other external factors, allowing us to investigate a

cell-intrinsic mode of T cell migration. We first analyzed T cell

behavior in channels with relatively narrow widths that we have

previously shown to optimize T cell speed (Jacobelli et al.,

2010) (Figure 2A and Movie S2). When T cells migrated through

an 8 mm-wide microchannel, two major behaviors could be

observed, as cells alternated between migrating and arrested

phases (Figure 2B). Typically, WT T cells would arrest for only

short periods; 86% of WT T cells would either migrate continu-

ously or stop for less than 20% of the time they were imaged

and then resume migration (Figures 2A–2C). Whereas 10.5% of

WT T cells were arrested for at least half of the time they were

imaged, 53% of Myo1g�/� T cells did so (Figures 2A–2C). Inter-

estingly, this stopping behavior was not apparent during 2D

migration (not shown), reminiscent of the absence of Myo1g

transient and local accumulation in 2D (Figures 1D and 1F),

and suggesting that migration in 2D and 3D environments

are differentially regulated. However, when motile, T cells from

Myo1g�/� mice moved nearly twice as fast as T cells from WT

mice (Figure 2D).

We noticed in microchannels containing more than one T cell

that arrested cells were able to reinitiate migration when they

encountered and were pushed by migrating cells (Movie S3, Fig-

ure 2E, and data not shown). In the absence of external force, we

found that spontaneous reinitiation of migration was defective in

Myo1g�/� T cells (Figure 2F). Consistent with this concept, we

found that Myo1g deletion resulted in an increased percentage

of cells with rounded morphology when in microchannels (Fig-

ure S2A). To test whether Myo1g facilitated reinitiation of polar-

ization and symmetry breaking, we challenged cells to repolarize

following wash-out of blebbistatin, a drug that acutely causes

cells to round up (Movie S4). In this context, Myo1g�/� T cells

required approximately three times as long to reinitiate polariza-

tion compared to their control counterparts (Figure 2G). Similar

delay was observed when other chemicals, such as Nocodazole,

were used to inhibit polarization (data not shown). Myo1g�/�

T cells were ultimately able to polarize, as confirmed by localiza-

tion of CD44 at the uropod and enrichment of phalloidin stain at

the leading edge (Figure 2H). Finally, because Myo1g�/� T cells
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migrate faster, we also analyzed the function of Myo1g on the

opposite transition, i.e., whether cells deficient in Myo1g would

have a defect in transitioning from a polarized to a rounded

morphology. We quantified in 2D (a condition in which we did

not see any increased stopping due to Myo1g deficiency)

whether Myo1g�/� cells would have the tendency to stay polar-

ized longer, which should be reflected by the percentage of cells

polarized at any time point, and did not find any difference in this

measure (Figure S2B). Together, these data demonstrate that

although these cells do not have a global defect in polarization,

they are delayed in generating a leading edge from a rounded

morphology. Such data are consistent with a requirement for

asymmetric application of membrane tension in amoeboid

motility (Houk et al., 2012).

Because we often observed Myo1g transiently accumulating

along cell margins as a cell veers away from that space, we spec-

ulated that Myo1g might encourage T cell turning. We therefore

quantified the frequency at which a given cell would change

direction while migrating in thin microchannels. We found that

Myo1g�/� cells underwent approximately three times fewer

complete changes in direction (‘‘u-turns’’) (Figures 3A and 3B).

In larger microchannels, activated T cells weave between

opposing walls rather than crawling forward along a single wall

(Jacobelli et al., 2010) (Figure 3C and Movie S5). The weaving

angle as T cells turned away from each sidewall was significantly

shallower for Myo1g�/� cells as compared to controls (41.3� ± 2�

for WT and 29� ± 2� for Myo1g�/� and Figure 3D). We confirmed

these results by analyzing T cell migration in 3D collagen

matrices. Again, Myo1g deletion induced increased speed (Fig-

ure 3E), decreased turning angle (Figure 3F), but also increased

rounded morphology (Figure S2C), herein demonstrating that

T cells retain intrinsic migration features even when within a fiber

network. Finally, we confirmed that decreasedweaving angles of

Myo1g�/� T cells as they turn were not solely due to increased

speed (Figure S2D). Taken together, this analysis reveals a role

for Myo1g in regulating intrinsic speed as well as the propensity

to turn.

We then investigated whether Myo1g regulation of cell migra-

tion could be attributed to membrane tension. In a first set of ex-

periments, we artificially increased membrane tensions in cells
Figure 1. Myo1g Regulates Membrane Tension and Transiently Accum

Tension Perturbation

(A) Heatmap showing class I myosin gene expression in naive CD4 and CD8 T c

(B) Individual tether force records of WT (black) and Myo1g�/� (red) T cells.

(C) Average steady-state tether force measurements on WT (black) and Myo1g�

(D–F) YFP-Myo1g-expressing OT-I cell blasts were harvested at days 4 to 5 after a

migrating on ICAM-1-coated coverslips (‘‘2D’’). Upper left: YFP; upper right: mem

3 mm. (E) Images represent individual time points chosen from live-imaging t

microchannels (‘‘3D’’). YFP-Myo1g fluorescence is shown in pseudocolor (YFP-M

Arrows indicate direction of migration, circles indicate a stopped cell. (F) Quantifi

environment. Cell was scored positive if it displayed any localized increase in flu

pendent experiments. n > 50, ***p < 0.001.

(G–I) YFP-Myo1g-expressing T cell blasts generated frommTomato mice were al

by ‘‘pushing’’ the cell with a needle tip. Cells were imaged at 2–4 s intervals, usi

mulation at the site where mechanical stress was applied. Upper panel: DIC; lo

pseudocolor. A.U.: arbitrary unit. Scale bar represents 3 mm. (H) Quantification of t

mechanical forces. Data correspond to four independent experiments. *p < 0.0

fluorescence intensities along the cell surface at different times following applica

See also Figure S1.
migrating in 2D environments by adding a hypotonic buffer that

causes swelling and increased tension (Keren, 2011). This treat-

ment reduced and therefore rescued cell speed of Myo1g�/�

cells (Figure S3A). We noted that WT cells were also sensitive

to hypotonic treatment, suggesting that additional tensioning

systems may exist in T cells. In a second set of experiments,

we tested whether a Myo1g mutant that was properly localized

at the plasmamembrane, but did not transiently accumulate dur-

ing migration in 3D (Figures S3B and S3C), was able to rescue

migration of Myo1g�/� cells. This motor-deficient mutant (IQ-

Tail) could not link actin to the plasma membrane. Whereas full-

length (FL) Myo1g restored T cell speed (Figure S3D) and T cell

weaving angles (Figure S3E) of Myo1g�/� T cells migrating in mi-

crochannels toWT values, themutant IQ-Tail did not. Altogether,

we conclude that T cells have an intrinsicmodeofmigration regu-

lated by Myo1g in a motor-dependent manner, most likely

through global and discrete regulation of membrane tension.

Meandering by naive T cells in secondary lymph organs is not

mechanistically well-understood (Germain et al., 2012; Mempel

et al., 2004; Miller et al., 2003). To address whether Myo1g

regulates random walk motility, WT and Myo1g�/� T cells were

tracked in the T cell zone of LNs where they were found in the

same intranodal space (Figure 4A, Movie S6, and data not

shown). Aswe observed in vitro (Figure 3), motility tracks demon-

strated a strong tendency for Myo1g�/� cells to move in

straighter paths through the LN (Figures 4A and 4B). Quantifica-

tion of their speed showed that they also moved approximately

50% faster on average (Figures 4A and 4C). Further track anal-

ysis showed that the average turning angle between 30 s frames

was reduced from 52� for WT T cells to 40� for the Myo1g�/�

T cells (Figure 4D). We never observed enhanced arrest in My-

o1g�/� cells in LNs, presumably due to the multitude of

mechanical pushing forces generated in this environment or

due to local chemokine gradients.

Although our analysis of in vitro migration in simplified 3D

environments demonstrated that Myo1g regulated an autono-

mous mode of cell migration (Figures 2 and 3), we verified that

differences in migration patterns in vivo were not influenced by

a defect in responding to external factors such as integrin ligands

or chemokines. Myo1g�/� T cells expressed normal levels of
ulates during T Cell Migration in 3D Environment or after Membrane

ells from LNs. Data are microarray data from the Immgen resource.

/� (red) T cells (n = 5). ***p < 0.001.

ctivation. (D) Snapshot showing representative YFP-Myo1g localization in cells

brane labeling DID; lower left: DAPI; lower right: merge. Scale bar represents

ime courses of YFP-Myo1g-expressing T cells migrating in ICAM-1-coated

yo1g), or overlaid with bright-field images (merge). Scale bar represents 3 mm.

cation of transient YFP-Myo1g accumulation in cell migrating in 2D versus 3D

orescence intensity during the imaging period. Data correspond to two inde-

lowed to migrate on ICAM-1-coated coverslip. Mechanical forces were applied

ng a 633 objective. (G) Snapshots showing representative YFP-Myo1g accu-

wer panel: ratio between YFP and Tomato fluorescence intensity is shown in

ransient YFP-Myo1g local accumulation as in (F) before and after application of

5, n = 32. (I) Graphs show the ratio between YFP and membrane (mTomato)

tion of membrane pressure. Site of pressure is depicted by a red line.
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Figure 2. Myo1g Controls T Cell Speed and Reinitiation of Migration

(A–F) T cells isolated from WT or Myo1g�/� mice were introduced into ICAM-1-coated microchannels (A–D: 8 mm wide; E and F: 20 mm wide). (A) Bright-field

images represent individual time points chosen from live-imaging time courses. Red and blue circles outline T cell positions; numbers indicate time in minutes.

Scale bar represents 10 mm. (B) Kymograph-basis for analysis of T cell migration versus arrest. Kymographs are selected examples. (C) Graph shows the

percentage of WT (black) and Myo1g�/� (red) cells stopping. The stop coefficient corresponds to percentage of time a cell was arrested over total time this cell

was imaged. Data represent one representative experiment of two independent experiments (n = 50). (D) Graph shows mean velocities for WT (black) and

Myo1g�/� (red) T cells under 3D confinement. Data correspond to three independent experiments. ***p < 0.001. (E) Snapshots showing a cell reinitiating po-

larization andmigration when pushed by another migrating cell. Numbers represent time inminutes. Scale bar represents 10 mm. (F) Graph shows the percentage

of arrested WT (black) or Myo1g�/� (red) cells that reinitiated migration without any external stimuli, compared to cells that were pushed by another cell (n = 62).

Cells that did not move at all during the imaging period were excluded. Data correspond to three independent experiments. *p < 0.05.

(G and H) WT or Myo1g�/� naive T cells migrating on ICAM-1-coated coverslips were treated with blebbistatin for 10min, and the inhibitor was washed away. (G)

Graph shows the time necessary for the cells to reinitiate polarization (n = 120). Data correspond to three independent experiments. *p < 0.05. (H) Cells were fixed

20 min after washing the inhibitor and stained for CD44 and actin. Pictures are representative of two independent experiments. Scale bar represents 10 mm.

See also Figure S2.

496 Cell 158, 492–505, July 31, 2014 ª2014 Elsevier Inc.



Figure 3. Myo1g Regulates Autonomous

T Cell Weaving during Migration in 3D

(A–D) T cells isolated from WT or Myo1g�/� mice

were introduced into ICAM-1-coated micro-

channels. (A) Kymograph-basis for analysis of

change in direction in 8 mm-wide microchannels.

Kymographs are selected examples. (B) Change in

direction (number of times that a cell changed di-

rection in 1 min) of WT (black) and Myo1g�/� (red)

T cells migrating in 8 mm-wide microchannels.

Data are from three independent experiments.

***p < 0.001. (C) Bright-field images of live-imaging

time courses of cells migrating in 20 mm-wide mi-

crochannels. Red circles outline T cell positions

during weaving; numbers indicate time in minutes.

Scale bar represents 10 mm. (D) Mean weaving

angle (angle a given cell bounces from one wall to

the opposite wall) of WT (black) and Myo1g�/�

(red) T cells migrating in 20 mm microchannels.

Data are from three independent experiments.

***p < 0.001.

(E and F) T cells isolated from WT or Myo1g�/�

mice were embedded and allowed to migrate in

collagen lattices. Graphs show mean speed (E)

and turning angle (F) of migrating WT (black) and

Myo1g�/� (red) T cells. Data correspond to two

independent experiments. ***p < 0.001.

See also Figure S3.
integrins LFA-1 and chemokine receptor CCR7 expression (data

not shown), and they were as competent as their WT counter-

parts to adhere to integrin ligands (Figure 4E) and to respond

to chemokines such as SDF1a (Figures 4F, S4A, and S4B).

Normal overall response to tissue was also supported by the

observation that B and T cell populations appear at normal fre-

quencies (Figure 4G) and numbers (data not shown) in LNs of

Myo1g�/� animals, and that homing to LNs was not impaired

by Myo1g deficiency (data not shown).

Based on these data, Myo1g-deficient T cells were more

‘‘ballistic,’’ i.e., they could cover territory faster as assessed by

path length (Figure 5A) but simultaneously expanded the radius

of their search (i.e., underwent displacement) at a faster rate

(Figure 5B). Given that the ratio of these, loosely representing

the degree of saturation of volumes actually surveyed versus
Cell 158, 492–
potentially surveyed, was similar be-

tween WT and KO cells (Figure 5C),

we hypothesized that their efficiency

for running into relatively fixed targets

might not be improved. We thus initially

evaluated LN surveillance (Search) by

modeling and quantifying the efficiency

with which WT and Myo1g�/� T cell

tracks, taken from live-imaging data in

LNs, would intersect randomly placed

in silico ‘‘APC targets’’ inside a sphere,

placing the starting point of T cell tracks

at the centroid (Figure 5D). Previous

modeling showed that increased T cell

speed (without altering turning patterns)
increases LN surveillance (Beltman et al., 2007), but over

hundreds of simulations, we found only subtle differences

in the frequency with which 20–30 min tracks from WT and My-

o1g�/� intersected in silico targets (Figures 5E and 5F). Similar

effects were seen when path segments were assembled into

artificial 12 hr tracks (Figures S4C–S4F), and these results

concur with data on other biological search strategies in which

ballistic motility is not necessarily more efficient (Reynolds and

Bartumeus, 2009).

Reasoning that fewer turns and faster migration might

regulate the dwell time for surveying targets (illustrated in Fig-

ure 5G), we also performed live-imaging of WT and Myo1g�/�

T cells in excised LNs from mice that had been transferred

with labeled activated DCs (without antigen) and quantified

the time spent in contact for each T-DC encounter (which
505, July 31, 2014 ª2014 Elsevier Inc. 497



Figure 4. Myo1g Generates Meandering Interstitial Migration

(A–D) Migratory behavior of fluorescently labeled WT and Myo1g�/� OT-I cells inside WT LNs. (A) Image of a region of the T cell zone showing tracks for WT (left)

and Myo1g�/� (right) T cells. Tracks are color-coded according to the mean track speed. Scale bar represents 50 mm. (B) Representative tracks in the xy plane of

control T cells (left plot) andMyo1g�/� T cells (right plot) over a 15min period. Starting coordinates are set to the origin. Units are inmicrometers. Each colored line

represents a single T cell track. (C) Instantaneous velocity profiles ofWT (black) andMyo1g�/� (red) OT-I cells. Histograms show the relative frequency distribution

of the two populations. (D) The median turning angle was calculated for each cell and plotted for each group (WT, black and Myo1g�/�, red). Data are from three

independent experiments. ***p < 0.001.

(E) Percentage (%) of WT (black) and Myo1g�/� (red) T cells that adhered to integrin-coated plates.

(F) WT (black) andMyo1g�/� (red) OT-I T cells were labeled with CFSE and CMTMR, respectively, mixed at a ratio 1:1 and subjected to a Boyden chamber assay.

Percentage of cells that migrated toward the indicated dose of SDF1a was quantified by flow cytometry. The data are representative from three independent

experiments.

(G) Flow cytometry analysis of T cell (CD3+) and B Cell populations (B220+) in LNs.

See also Figure S4.
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Figure 5. Defective LN Surveillance of Myo1g�/� T Cells
(A–C) Migratory behavior of fluorescently labeled WT and Myo1g�/� OT-I cells inside WT LNs. Representative experiment showing path length (A), mean

displacement (B), and the ratio between path length and mean displacement (C) of WT (black) and Myo1g�/� (red) OT-I cells over square root of time.

(D–F) Lymph node search. (D) T cell tracks start at the origin of a sphere where targets are placed randomly. Track is scored positive if it crosses a target. (E) Scan

efficiency (probability a track touches a target) relative to the diameter of the sphere. (F) Frequency of scan efficiency for a sphere diameter of 20 mm.

(G–I) DC evaluation. (G) The time a T cell (green) was in contact with a single DC (pink) was deduced from 2P data (see Experimental Procedures). Red and black

lines illustrate trajectories of T cells. (H) Average time WT or Myo1g�/� T cells contact a DC. ***p < 0.001, n = 50. (I) Fraction of cells still in contact with a DC over

time. ***p < 0.001, n = 70.

See also Figure S4.
we refer to as Evaluation). T cells deficient for Myo1g spent

less time in contact with DCs (Figure 5H). Off-rate analysis

showed that only 25% of Myo1g�/� T cells were in contact
with a DC for at least 1 min, compared to 45% of control

cells (Figures 5I and S4G). We conclude that migration pat-

terns generated by Myo1g amplify the time a T cell scans
Cell 158, 492–505, July 31, 2014 ª2014 Elsevier Inc. 499



Figure 6. Cell-Intrinsic Migration Regulated by Myo1g Is Important for Immune Activation against Rare Antigens

(A and B) Percentage ofWT (black) andMyo1g�/� (red) OT-I cells positive for CD25 and CD69 24 hr (A) or percentage of proliferating cells 72 hr (B) after activation

in vitro with BMDCs pulsed with different doses of OVA peptide. Data are from three independent experiments.

(C and D) Mice bearing WT or Myo1g�/� OT-I cells were immunized with a high dose of antigen. (C) Mean arrest coefficient (percent of time a cell has a

speed % 2 mm/min) of WT (black) and Myo1g�/� (red) OT-I cells arrested in LN 8 hr after immunization with DEC-OVA. Data are from two independent exper-

iments. (D) Percentage of OT-I cells positive for CD69 24 hr post-immunization with 106 OVA-pulsed APCs.

(E) Fluorescently labeled WT and Myo1g�/� OT-I cells were transferred in WT recipients, and LNs were explanted after 16 hr. Cells were imaged by two-photon

microscopy for 10 min. OVA peptide was then added to the media perfusing the LN, and cells were imaged for another 10–15 min. Graph shows a representative

(legend continued on next page)
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a DC while otherwise giving rise to similar efficiencies of

‘‘search.’’

What is the significance of Myo1g and this motility pattern

for T cells? T cells specific for a particular antigen are rare in

the naive repertoire (Blattman et al., 2002). Additionally, cellular

repolarization and recognition of antigens on the surface of

APCs lag�1 min after initial contact (Krummel et al., 2000; Wülf-

ing et al., 1997). Given that Myo1g deficiency reduced the time a

T cell would evaluate a potential APC and that there was a 55%

reduction in the percentage of T cells that were in contact with a

DC for more than 1 min (Figure 5), we sought to take advantage

of Myo1g�/� T cells to determine whether an autonomous mode

of T cell migration optimized the efficiency of recognizing and

responding to DCs.

We first established that TCR triggering by cognate antigen

was not defective in Myo1g�/� T cells by the following criteria:

(1) When WT and Myo1g�/� OT-I T cells, specific for an oval-

bumin peptide, were challenged with antibodies against CD3

and CD28, they activated equivalently, as measured by upregu-

lation of the activation marker CD69 or by proliferation (Figures

S5A and S5B). (2) Activation (Figure 6A) and proliferation (Fig-

ure 6B) of these same cells in response to APCs pulsed with their

cognate ovalbumin peptide were indistinguishable, even when

using limiting concentrations of antigen. (3) Proximal calcium

signaling was equivalent (data not shown). (4) Motility arrest

and CD69 upregulation were equivalent between WT and My-

o1g�/� OT-I cells when antigens were presented on a large pop-

ulation of APCs in vivo (Figures 6C and 6D). (5) Symmetry

breaking necessary for synapse formation during antigen recog-

nition was not impaired in vitro, as accessed by TCR microclus-

ter dynamics (Figures S5C and S5D and Movie S7). (6) The rate

of symmetry breaking during antigen recognition was also not

impaired in vivo, asWT andMyo1g�/� T cells slowed their speed,

stopped, and rounded up at the same rate following Ag recogni-

tion (Figure 6E andMovie S8). Thus, Myo1g deletion did not alter

antigen recognition per se.

We then performed in silico efficiency modeling based on

tracks from Figure 5 including a factor that takes into account

an Evaluation or requisite mean detection time (Campos et al.,

2013) for a T cell to find and respond to displayed peptide

MHC (pMHC) on the APC. As expected, Myo1g tracks were

comparatively less efficient when the model required T cells to

undertake an evaluation period that was equal or greater (data

not shown) to the observed �1 min lag time for T cells to signal

in response to APC contact (Figure 6F) (Krummel et al., 2000;

Wülfing et al., 1997). In predator-prey searches, larger numbers

of prey can compensate for poor detection. In this case, for min-

imal interaction times equal to or greater than the measured
example (out of three independent experiments) ofWT (black) andMyo1g�/� (red)

by an arrow.

(F) LN search was assessed as in Figures 5D–5F. Graph shows the ratio of the fre

efficiency of the search was calculated including or not an evaluation > 1 min.

(G andH)Mice bearingWT orMyo1g�/�OT-I cells were immunizedwith the indica

CD69 24 hr post-immunization (G) or ratio between the percentage of Myo1g�/� c

are from four independent experiments. **p < 0.01 and ***p < 0.001.

(I) Mice (n = 10) were transferred with 53 103 WT (black) or Myo1g�/� (red) OT-I ce

shows mouse survival over time.

See also Figure S5.
lag time (1 min), the decreased antigen detection efficiency of

Myo1g�/� T cells is predicted to be rescued by increasing target

density.

Based on these predictions, we determined whether Myo1g

was required, empirically, for T cells to find and respond to

rare APCs. WT or Myo1g�/� OT-I cells were transferred into

mice, followed by immunization with graded numbers of APCs.

One day after immunization, when transferred DCs had reached

the LN (Figure S5E), equivalent fractions of WT and Myo1g�/�

OT-I cells were activated when immunizing with a high number

of DCs (Figure 6G). In contrast, the fraction of Myo1g�/� OT-I

cells that were successfully triggered when a low number of

APCs was transferred was decreased by 62% compared to

WT OT-I cells (Figure 6G). This effect perpetuated out into the

generation of clonal expansion; Myo1g�/� OT-I T cells had

expanded to the same extent as WT counterparts when a large

number of APCs was introduced (Figure 6H—106 APCs), but

when APCs were rarer, Myo1g�/� OT-I T cells showed a 59%

reduction in numbers compared to controls (Figure 6H—103

APCs). Finally, we examined whether search behavior regulated

by Myo1g and optimized for discovering rare APCs was actually

required for an adaptive immune response to infection. Mice

bearing a physiological number of WT or Myo1g�/� OT-I cells

were infected with a dose of Listeria monocytogenes expressing

OVA, below the lethal dose (LD)50. Whereas 75%ofmice bearing

control OT-I survived after challenge, only 35% of mice trans-

ferred with OT-I deficient in Myo1g did so (Figure 6I). We thus

concluded that Myo1g and the motility patterns it imparts,

though dispensable for antigen recognition per se, are neverthe-

less important for efficient surveillance.

DISCUSSION

In this study, we provide direct genetic evidence that turning

in T cells is in part ‘‘hard-wired’’ and that a membrane-bound

myosin 1 isoform supplies much of the basis for this behavior.

Myo1g�/� T cells, which showed altered migration patterns

in vitro and in vivo, are less efficient in scanning and evaluating

APCs. Motility pattern, therefore, is a critical determinant of

immune sensitivity to foreign antigens.

Myo1g is localized at the plasmamembrane and displays tran-

sient accumulation during migration in 3D. Although significantly

more biophysical data will be required to determine whether

Myo1g is recruited by other molecules to membranes or is

ubiquitous and autonomously force-sensing, our data clearly

show that Myo1g is the source of a significant amount of the ten-

sion on the T cell membrane. Differential dynamic localization of

Myo1g in T cells migrating in 2D or 3D also suggests that Myo1g
cell speed over time (n > 50 for each cell type). OVA peptide addition is depicted

quency of encounter of KO tracks over WT tracks relative to target density. The

ted number of OVA-pulsedBMDCs (APCs). Percentage of OT-I cells positive for

ells and percentage of WT cells 6 days post-immunization (H) are shown. Data

lls and were challenged with a sublethal dose of LM-OVA (0.253 LD50). Graph
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is particularly important in 3D. This follows on other emerging

data that 2D and 3D motility have significantly different require-

ments and modes (Friedl et al., 2012). We hypothesize that

global membrane tension, regulated, at least in part, by

Myo1g, attenuates T cell speed, whereas localized changes in

membrane tension by Myo1g are involved in T cell turning.

Consistent with this, Myo1g�/� T cells migrating in a uniform

soft media (2D) have increased speed compared to WT cells

but equivalent path straightness (data not shown).

Myo1g function is likely complemented by other proteins such

as those modulating the site of actin polymerization (Dang et al.,

2013). The identity, role, and relationship to Myo1g of such other

molecules will need to be elucidated. Modulation of tension at

different sites and times also leads to apparent opposite pheno-

types. For instance, deletion ofMyo IIA inDictyostelium induces a

loss of cortical tension (as opposed tomembrane tension), which

is correlated with decreased cell speed (Jay et al., 1995), and in

Tcells, loss ofmyosin II leads toover-adherenceandslowmotility

in vivo (Jacobelli et al., 2010). Establishing exact localization

during migration and binding partners of those regulators is

probably, here again, the key to our understanding of how tension

within different regions orchestrates cell migration.

TCR triggering by T cells lacking Myo1g is unaffected in a

multitude of assays, except when T cells are exposed to very

low numbers of APCs. Infections with virus may generate far

fewer than 100 APCs per LN (Usherwood et al., 1999), and early

protective response to viruses limit both dissemination and

ensuing destruction. Levels of cognate APCs in many immuniza-

tions and infection models are in the higher range of our assay

and thus are likely oversaturating by themeasures we have used.

Search is a feature of many biological systems, and it is

well understood that ballistic modes of predatory searching, as

by some sea birds, produce a search that is significantly incom-

plete (Miramontes et al., 2012). The phenotype of Myo1g�/�

T cells and the modeling of their ‘‘Search’’ versus ‘‘Evaluation’’

dynamics provide an enlarged framework for additional under-

standing of immune search and surveillance. This work would

suggest that future modeling will profit from including a param-

eter equivalent to the pre-exponential (or frequency) factor

from chemical kinetics (Zhdanov et al., 1988). That factor ‘‘k’’

partially encompasses the likelihood that two or more chemical

reactants bump into each other in a favorable orientation to facil-

itate the generation of products. In the case of T cell search,

our study suggests that an optimum exists between high T cell

speed (to increase the chance a T cell comes across a target)

and the slower process of meandering (which puts the length

of T-DC contacts in a range consistent with generation of

signaling).

Cell motility in vivo is undoubtedly influenced by features of the

LN itself, like the fibroblastic reticular cell (FRC) network and

local chemotaxis. Our results do not necessarily negate the po-

tential role of FRC in guiding motility. Because the FRC network

of LNs is highly convoluted (Bajénoff et al., 2006; Katakai et al.,

2004), straighter paths by Myo1g�/� cells compared to WT cells

in the same region might still represent cells that are loosely

attached and ‘‘guided’’ by these fibers but that take more

straight choices at each FRC junction. In comparison to our

findings, computational analysis suggests that the guidance
502 Cell 158, 492–505, July 31, 2014 ª2014 Elsevier Inc.
afforded by the FRC network has only a minor effect on the

probability to find rare APCs (Graw and Regoes, 2012).

Because Myo1g is not required for chemotaxis, the straighter

paths taken by Myo1g�/� cells may imply that chemokines are

not a prominent part of directional guidance cues for early anti-

gen searches in the T cell zone. That situation likely changes

when T cells get some degree of initial triggering and upregulate

chemokine receptors such as CCR5 (Castellino et al., 2006;

Hugues et al., 2007) or CXCR3 (Hu et al., 2011); cells that upre-

gulate these in response to successful detection of an initial

pMHC encounter may thereby be subsequently guided rather

than relying on unguided search. Thus, the search that may mat-

ter in the case of rare-antigen detection relates to the ability of a

T cell to find and successfully respond to its very first pMHC-

bearing APC and to subsequently reach a threshold of engage-

ment(s) for chemokine receptor expression. Beyond that, the

chemokines generated by other successful clones may help a

T cell to find additional APCs or cells already identified by clones

responding in parallel.

This work exemplifies an unappreciated role for an unconven-

tional class I myosin in the cell biology of motility. In mice and

humans, class I myosins can be subdivided into short-tailed

forms (Myo1a, b, c, d, g, and h) and long-tailed (amoeboid) forms

(Myo1e and f). Of these, the long formMyo1f and the short forms

Myo1c and Myo1g are enriched in lymphocytes (Patino-Lopez

et al., 2010). Long-form Myo1f has been implicated in neutrophil

adhesion (Kim et al., 2006), but in its case, this is likely due to

its association with vesicular membranes leading to changes

in integrin function. The loss of Myo1g did not affect integrin

adhesion in T cells, suggesting that the specificity of the tail

domain likely determines the relevant function for the particular

myosin. Myo1c is strongly expressed in B cells, in which it partic-

ipates in cytoskeleton rearrangements and antigen presentation

(Maravillas-Montero et al., 2011).

To conclude, we provide evidence that Myo1g is a master

regulator of membrane tension in T cells and is required for

optimal meandering and successful LN surveillance.

EXPERIMENTAL PROCEDURES

Local Application of Pressure

Activated T cells generated from WT or mTomato mice were transduced with

YFP-Myo1g. ICAM-1-coated chambers were obtained by coating 8-well

chambers (Lab-Tek) with 5 mg/ml ICAM-1-Fc (R&D systems) in PBS for 1 hr

at 37�C. Four to eight days after activation, cells were allowed to migrate on

ICAM-1-coated coverslips for at least 2 hr. Mechanical stress was locally

applied by using a glass probe with an inside diameter of 0.5 mm. Most cells

demonstrated continual viability after pushing, and any cell that appeared

damaged was not scored in this analysis. T cells were imaged for 2 min at in-

tervals of 2–4’’ with a modified microscope (Axiovert 200M; Carl Zeiss, Inc.)

with Plan-Neofluar 633 objective (Carl Zeiss, Inc.).

Microchannel Fabrication and Imaging

Microchannel fluidic devices were fabricated, and cells were loaded in mi-

crochannels as already described (see Extended Experimental Procedures)

(Faure-André et al., 2008; Jacobelli et al., 2010). T cells crawling in the

microchannels were imaged for 60 min at intervals of 1 min. Metamorph

software (Molecular Devices) was used for calculation of cell speed and

directionality. For analysis of the localization of YFP-Myo1g constructs in

migrating T cells, cells were imaged for 5 min at 5 s intervals. Images

were acquired with an inverted Zeiss with Yokogawa CSU-10 Spinning



Disk. The imaging and control software used was MetaMorph (MDS Analyt-

ical Technologies). A minimum of 30 cells per microchannel width per treat-

ment condition were analyzed.

Reinitiation of Polarization and Polarization Quantification

Coverslips were coated with 5 mg/ml ICAM-1 in PBS for 1 hr at 37�C. T cell

blasts generated from WT or Myo1g�/� mice were allowed to migrate on

ICAM-1-coated coverslips. Cells were treated with blebbistatin (racemic

mix, 100 mM of the racemate, Calbiochem) for 10 min, and the inhibitor was

washed away. T cells were imaged for 20 min at intervals of 10 s with a modi-

fied microscope (Axiovert 200M; Carl Zeiss, Inc.) with Plan-Neofluar 203

objective (Carl Zeiss, Inc.). For quantification of cell polarization, cells

migrating on ICAM-1 coverslip (or alternately 20min after washing blebbistatin

away) were fixed in PBS 1% PFA 15 min at room temperature (RT) and per-

meabilized with 0.05% Saponin for 5 min at RT. Cells were stained with

CD44-FITC and Phalloidin-Alexa 555 in PBS 2% BSA for 20 min at RT.

Two-Photon Imaging of Explanted Lymph Nodes

WTandMyo1g�/�OT-I cells were labeledwith 2 mMCFSE and 20 mMCMTMR,

respectively and ad-mixed, and 3 3 106 total cells were transferred to WT

recipient. Switching dyes did not affect results (data not shown).

For DC Scanning Experiments

1 3 106 LPS-activated bone marrow-derived dendritic cells (BMDCs) from

Act-CFP mice were injected subcutaneously in the footpad or the flank at

the same time of T cell transfer.

For Analysis of Cells during the Arrest Phase

Micewere immunized subcutaneously in the footpad or the flankwith 2 mg anti-

DEC205 conjugates that were produced in house (Bonifaz et al., 2002; Gérard

et al., 2013) together with 10 mg anti-CD40 (Clone 1C10, eBiosciences).

Popliteal, Inguinal, and Axillary LNs were taken out 16 to 24 hr after T cell

transfer, or 8 hr after DEC-OVA immunization, and immobilized on coverslips

with the hilum facing away from the objective. Time-lapse imaging was per-

formed with a custom resonant-scanning instrument containing a four-photo-

multiplier tube (Hamamatsu) operating at video rate, as described (Friedman

et al., 2010). Each xy plane spanned 288 mm 3 240 mm at a resolution of

0.60 mm per pixel. Images of up to 35 xy planes with 3 mm z spacing were

acquired every 30 s for 30 min.

Imaris (Bitplane) and Matlab software (Mathworks) were used to quantify

T cell migration behavior. To characterize contact parameters between

T cells and DCs, tracks and surface of T cells and DCs were generated, and

the dwell time of interaction between surfaces was analyzed as previously

described (Gérard et al., 2013): T cell–DC cell interaction was defined as the

close association of a given OT-I cell surface with a DC surface for at least

1 min. A threshold of 4 mm between cell edges was used, which accounts

for low fluorescence frequently encountered at cell edges, which fit manual

quantification (data not shown).

Track Simulation

To overcome deficiencies in cell-based track analyses (Beltman et al., 2009;

Textor et al., 2011), long duration tracks were simulated from shorter duration

T cell tracks. Trajectories generated by tracking T cells that transited in LNs

in the absence of antigen were pooled into control and Myo1g�/� cell groups.

The instantaneous displacements (the x, y, and z displacements measured for

each 30 s sampling interval) were calculated from all tracks in the two groups.

Simulated tracks for WT andMyo1g�/� cells were then generated by randomly

sampling the instantaneous displacements and cumulatively summing the

selected displacements. One hundred and twenty-eight control and KO tracks

lasting 12 hr were simulated.

Track Encounter Efficiency or Search Efficiency

To estimate the efficiency with which T cell tracks encountered a stationary

dendritic cell, hypothetical target dendritic cells were placed in space at an

average distance d from the T cell tracks’ common origin. The distance d, in

the range of 5–60 mm (experimental data) or 50–600 mm (simulated tracks),

was supplied as an input parameter to the simulation. Dendritic cell positions

were generated by sampling from a random uniform distribution with amean of

2d, which placed the target dendritic cells, on average, d mm from the T cell
tracks’ origin. The distance for each target was combinedwith two random an-

gles on the interval [0, 2p] to generate a spherical coordinate for each dendritic

cell. A capture distance, defined as the sum of the dendritic cell radius and the

T cell radius, was used to determine whether the T cell encountered a hypo-

thetical dendritic cell. The dendritic cell radius (10 mm) was specified as an

input parameter to the simulation, whereas the T cell radius was a randomly

chosen value from the list of T cell radii measured as part of the in vivo tracking

analysis. A T cell was considered to encounter a dendritic cell if at any point in

the track, the distance between the T cell and dendritic cell positions was less

than the capture distance. The simulation was repeated for 50 trials, with new

dendritic cell positions generated for each trial.

Dwell Duration or Evaluation

To estimate the amount of time that T cells spent near dendritic cells in the

absence of antigen, the track encounter efficiency simulation was modified

to calculate the number of successive simulation frames that a T cell remained

within the capture distance of a dendritic cell for each encounter. The distribu-

tion of the dwell durations was calculated, with a single-frame encounter

assumed to represent a 30 s dwell time, a two-frame encounter assumed to

represent a 60 s dwell time, etc.

Statistical Analysis

Data were expressed as mean ± SEM, unless specified. Comparisons

between groups were analyzed with the t test or one-way or two-way Anova

test, using GraphPad Prism software.
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