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SUMMARY
It is well understood that antigen-presenting cells (APCs) within tumors typically do not maintain cytotoxic
T cell (CTL) function, despite engaging them. Across multiple mouse tumor models and human tumor
biopsies, we have delineated the intratumoral dendritic cell (DC) populations as distinct from macrophage
populations. Within these, CD103+ DCs are extremely sparse and yet remarkably capable CTL stimulators.
These are uniquely dependent on IRF8, Zbtb46, and Batf3 transcription factors and are generated by
GM-CSF and FTL3L cytokines. Regressing tumors have higher proportions of these cells, T-cell-dependent
immune clearance relies on them, and abundance of their transcripts in human tumors correlates with clinical
outcome. This cell type presents opportunities for prognostic and therapeutic approaches across multiple
cancer types.
INTRODUCTION

In immunoevasive tumors, a complex microenvironment de-

velops alongside the lesion, and despite the recruitment of

CD8 T cells, there is no effective control of the developing

mass. This microenvironment is prominently composed of the

mononuclear phagocytic lineage (MPS) in addition to tumor-

associated fibroblasts (TAFs) and a variety of additional immune

infiltrates, including neutrophils and tumor-specific T cells (Ha-

nahan and Weinberg, 2011; Kraman et al., 2010). A primary

conundrumat present is to understandwhy the latter cells, which
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implicated specific MPS-lineage-derived cells, particularly

immature monocytes, in dampening the responsiveness of cyto-

toxic T cells (CTLs) in tumors (Kusmartsev et al., 2005). Through

intravital imaging, we and others have found that antigen-spe-

cific CD8+ T cells are initially captured in prolonged interactions

with myeloid cells, along the tumor border (Boissonnas et al.,

2013; Engelhardt et al., 2012). In those experiments, the myeloid

cells that phagocytosed tumor antigens and cross-presented

them, when purified in aggregate, failed to stimulate T cells

in vitro. Thus, by all criteria to date, the immune microenviron-

ment is a combination of poorly stimulatory and/or actively inhib-

itory APC partners for CTLs. While depletion of regulatory T cells

and checkpoint blockades are suggested to broadly license

tumor APCs (Curran et al., 2010), there has been no evidence

of strongly stimulatory APCs within the native tumor.

As immunotherapies targeting costimulatory blockade (Leach

et al., 1996) move to the forefront of cancer therapeutics, it

becomes increasingly important to understand the spatial and

temporal context of costimulation and antigen presentation.

Antigen presentation at the lymph node (LN) for priming of tu-

mor-reactive T cell expansion is clearly critical and as such has

been successfully targeted therapeutically usingGM-CSF (Dran-

off, 2002) to increase presentation in the LN. As such, much of

the focus has remained on the LN despite our clear understand-

ing that antigen presentation also occurs within the tumor itself

and likely influences the functions of tumor CTLs.

It was therefore our goal to dissect the distinct composition of

the myeloid tumor microenvironment across a broad range of tu-

mors, with the purpose of understanding the lineage relation-

ships among these populations and how each influenced tumor

T cell responses and outcome.

RESULTS

Surface Markers Delineate Rare Tumoral DC Subsets
from Abundant Macrophages
To dissect the tumor-infiltratingmyeloid populations, we devised

an 11-color flowcytometry panel andprogressive gating strategy

using a spontaneous breast tumor model, PyMTChOVA

(Engelhardt et al., 2012), engineered along with the initiating

oncogene to independently coexpress fluorescent mCherry pro-

tein and ovalbumin. We profiled the tumoral CD45+ compart-

ment, many of which had phagocytosed tumor antigen and

thus exhibit mCherry fluorescence (Figure 1A). Subgating all he-

matopoietic cells by the myeloid-specific marker CD11b and the

monocyte marker Ly6C allowed removal of neutrophils and

monocytes (see Figure S1A available online). Within the MHCII+

cells, DCs were distinguished from macrophages based on

CD24hi and F4/80lo expression, neither of which alone is suffi-

cient to make this distinction. Subsequently, DCs were found

to parse into two populations based on differential expression

of CD11b andCD103, as has been observed in healthy peripheral

tissues (Hashimoto et al., 2011). We found these populations in

two mouse models of melanoma (B78ChOVA, a variant of B16

expressing mCherry and OVA, Figure 1B, and BRAF V600E, Fig-

ure S1B), across mouse strains (e.g., FVB PyMT; Figure S1B),

and in ectopic tumors (Lewis Lung Carcinoma; Figure S1B). We

refer to these DC populations as ‘‘CD11b+ DC1’’ and ‘‘CD103+

DC2’’ henceforth for ease of discrimination and discussion.
2 Cancer Cell 26, 1–15, November 10, 2014 ª2014 Elsevier Inc.
Parsing of the F4/80hi CD24lo compartment also revealed two

types of macrophages, identified by differential expression of

CD11c and CD11b. CD11clo CD11bhi (heretofore ‘‘TAM1’’) and

CD11chi CD11blo cells (‘‘TAM2’’) appear to broadly correspond

to similarly delineated MHCIIhi and MHCIIlo populations (Mova-

hedi et al., 2010) (see Figure 5C). While CD11c, otherwise a ‘‘pro-

totypical’’ DC marker, was highest on DCs, it was highly

expressed in TAM2 and to a lesser extent in TAM1 (Figure S1C).

These populations existed across all models examined, although

the prevalence of each and their ability to be unambiguously

distinguished varied slightly (Figures 1A, 1B, and S1B). For the

rest of this report, we therefore applied our lineage and function

studies to one example of spontaneous (PyMTChOVA) and

ectopic tumor model (B78ChOVA), except where indicated.

mCherry loading and retention, derived from the tumor, were

assessed for each of these populations. This revealed that the

uptakehi cells, localized to the tumor margin in our previous

report and then identified only by CD11c (Engelhardt et al.,

2012), were best captured in the TAM1 and TAM2 gates (Figures

1C and S1D). Comparatively, CD11b+ DC1s and CD103+ DC2s

took up or retained less mCherry while some monocytes but

few neutrophils showed evidence of modest antigen loading.

CD11b+ andCD103+ DC subsets have been found inmany pe-

ripheral mouse tissues, and their counterparts have been identi-

fied in peripheral human tissues, defined by expression of

BDCA1 and BDCA3, respectively (Dzionek et al., 2000; Haniffa

et al., 2012). We found that an equivalent TAM/DC distinction

was also possible in humanmetastatic melanoma samples using

these markers (Figure 1D). CD16�HLADR+ CD11c+CD14+ cells

representing all TAMs were distinct from CD16�HLADR+

CD11c+CD14�DCpopulations, whichwere in turn parsed by dif-

ferential expression of BDCA1 (‘‘DC1’’) and BDCA3 (‘‘DC2’’).

Common across mouse models (Figure 1E) and human mela-

noma biopsies (Figure 1F) are the presence and rarity of the

CD11b+/BDCA1 DC1 and CD103+/BDCA3 DC2 populations,

with DC2 being particularly sparse.

Protein and Transcriptional Delineation of Tumor DCs
and Macrophages
To validate our gating strategies, we applied panels of antibodies

defined by the ImmGen consortium (Gautier et al., 2012; Miller

et al., 2012). Consistent with our assignment of ‘‘DC,’’ CD103+

DC2 expressed CD135 FTL3 CD117 (cKit), and CD26, whereas

both TAM populations did not in the B78chOVA and

PyMTchOVA models (Figures 2A and S2A). Surprisingly,

CD11b+ DC1 did not express detectable levels of DC markers

and actually segregated more with TAM1 and TAM2 by virtue

of expression of several ‘‘macrophage’’ markers, including

CD206, CD64, and MerTK (Figures 2B and S2B). CD11b+ DC1,

however, slightly expressed CD301b and PDL2, both of which

have been used to define IRF4-dependent ‘‘DCTh2’’ populations

found in the skin (Figures 2C and S2C) (Gao et al., 2013; Kuma-

moto et al., 2013).

To further delineate these APCs, we analyzed the gene

expression profiles of sorted cells from B78chOVA tumors using

RNAseq. As shown in Figure 2D, blocks of genes clearly segre-

gate the four populations, with TAM1, TAM2, and CD11b+ DC1

being the most similar by PCA analysis (Figure 2E) and CD103+

DC2 the most distinct. Among the genes most differentially
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Figure 1. Rare DC and Abundant Macrophages in Mouse and Human Tumors

(A–C) Representative of greater than five independent experiments. (A) Flow cytometry and gating of tumor APC populations from digested and CD45-enriched

PyMTchOVA tumors. (B) Cytometry of tumor APC populations in ectopic B78ChOVA tumors. (C) Histogram of tumor-derived mCherry fluorescence by tumor-

infiltrating immune cells in B78chOVA.

(D) Representative cytometry of digested humanmelanomametastatic biopsy identifying corollary DC and TAMpopulations defined byCD45+ Lin� (CD3e, CD56,

CD19) HLA-DR+ and split by CD14, BDCA1, and BDCA3. Double-negative cells likely reflect B cells escaping lineage gate, immature monocytes, or pDC.

(E) Relative proportions of tumor infiltrating myeloid cells as a percentage of total CD45+ cells for PyMTchOVA and B78chOVA models. Pooled data from in-

dividual tumors are presented as mean ± SEM (n = 5) from mice.

(F) Frequency of DC and TAM populations infiltrating human metastatic melanoma presented as a percentage of total CD45+ cells. Pooled data from multiple

patients are presented as mean ± SEM from (n = 4) biopsies.

See also Figure S1.
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expressed, DC lineage-defining transcription factors Irf8 (Ta-

mura et al., 2005) and Zbtb46 (zDC) (Meredith et al., 2012)

were specific for CD103+ DC2 alone, or both DCs, respectively,

whereas Irf4 was modestly enriched in CD11b+ DC1 and all of

which were validated by quantitative RT-PCR (qRT-PCR)

(Figure 2F). This was also confirmed at the protein level by intra-
cellular flow cytometry for IRF4/8 (Figures 2G and S2D). All pop-

ulations expressed Myb, which indicates hematopoietic stem

cell origin as opposed to deriving from tissue precursors, seeded

from the yolk sac (Schulz et al., 2012).

As these intratumoral populations may derive through distinct

tumor-specific mechanisms and not rely on these transcription
Cancer Cell 26, 1–15, November 10, 2014 ª2014 Elsevier Inc. 3
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Figure 2. Surface and Transcriptional

Profiling Highlights Distinct Lineages of

Tumor DCs and Macrophages

(A) Expression of a panel of DC specific markers

comparedwith respective isotype (gray shaded). A

black box outlines the CD103+ DC2 population.

(B) Differential expression of Macrophage specific

markers (colored) with corresponding isotypes

(gray shaded). A black box outlines the CD11b+

DC1, TAM1, and TAM2 populations.

(C) Specific expression of DC-Th2 makers

(colored) by CD11b+ DC1 populations compared

with respective isotype (gray shaded). A black box

outlines CD11b+ DC1.

(D) Global transcriptional profiles revealed by

RNAseq of FACS-purified populations from

biological triplicates. Data are displayed as a

heat map of log2-fold change relative to the

global average of the top 1,000 genes by

maximum variance between DC1, DC2, TAM1,

and TAM2.

(E) PCA of DC1, DC2, TAM1, and TAM2 pop-

ulations based on RNAseq global transcriptional

profiles.

(F) qRT-PCR analysis of expression of Irf4, Irf8,

Myb, and Zbtb46 (zDC) from sorted APC pop-

ulations. Data are presented as mean D Ct ± SEM

calculated from biological triplicates (n = 3) (N.D.,

not detected).

(G) Intracellular staining for IRF4 and IRF8 in tumor

APC populations as compared with the respective

isotype (gray).

All data are from the ectopic B78chOVA tumor

model. Cell lineages are defined as in Figure 1. See

also Figure S2.
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factors as they do in some normal tissues, we investigated IRF8,

IRF4, Batf3, and zDC dependency using knockout or transcrip-

tion-factor-driven diphtheria toxin receptor (DTR) mice. We

took advantage of various ectopic tumors, due to the vagaries

and length of breeding these alleles to a spontaneous model.

Using an ectopic PyMT breast tumor model, we found that

loss of Irf8 specifically ablated the CD103+ DC2s but did not

affect TAM1 or TAM2 and mildly enriched the percentage of

CD11b+ DC1, perhaps as a result of compensation (Figure 3A).

Conversely, conditional deletion of Irf4, driven by CD11c-Cre

(Williams et al., 2013), resulted in the specific reduction in

CD11b+ DC1 with little change in the others in the B78chOVA

model (Figure 3B). In agreement with RNAseq data, Batf3-defi-

cient animals also lacked tumoral CD103+ DC2 populations in

a B78chOVA model, without effect on CD11b+ DC1, TAM1, or

TAM2 proportions (Figure 3C). Finally, when a zDC-driven DTR

allele was used, we somewhat unexpectedly found a specific

and significant reduction in CD103+ DC2with little or no changes

in the CD11b+ DC1 or TAM1/TAM2 populations in B78chOVA

tumors (Figure 3D). This may represent vagaries of the DTR allele

or subtle but significant variations in zDC expression. Taken

together, we conclude that CD103+ DC2 represents a distinct

lineage of APC as compared with CD11b+ DC1 and the highly

abundant TAM1/TAM2 in the tumor.
4 Cancer Cell 26, 1–15, November 10, 2014 ª2014 Elsevier Inc.
CD103+ DC2 Are Programmed by Distinct Cytokines
APCs derive from bonemarrow (BM) precursors, and their differ-

entiation into DC/macrophage subsets depends on specific

cytokines. To determine the cytokines driving differentiation

into these populations, we queried colony-stimulating factor

(CSF) receptor expression across models by qPCR. Whereas

Csf1r (M-CSFR) was found exclusively in TAM1, TAM2, and

CD11b+ DC1, Csf2rb (GM-CSFR) was uniquely expressed in

the DC1 and DC2 subsets, and Csf3r (G-CSFR) was absent in

all (Figure 4A). Using either neutralizing antibody treatment or

cytokine-receptor-deficient mice with ectopic tumors, we func-

tionally tested CSF cytokine reliance of the APCs at the tumor.

While TAM1 and TAM2 cells critically relied on CSF1 for their

maintenance, as has been shown previously (Wyckoff et al.,

2004), CD11b+ DC1 and CD103+ DC2 populations were uniquely

independent of CSF1 (Figure 4B). For use of cytokine receptor-

deficient mice, we developed a congenic adoptive transfer

model, whereby granulocyte macrophage progenitors (GMPs)

were transferred into ectopic tumor-bearing hosts and repopula-

tion was tracked in the BM, spleen, and tumor (Figure 4C). At the

tumor GMP-derived cells populated all myeloid compartments,

confirming GMP origin of CD11b+ DC1, CD103+ DC2, TAM1,

and TAM2 (Figure 4D). By use of the GMP adoptive system

with a competitive transfer, we found a selective inability of
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Csf2rb�/� cells to reconstitute DCs at the tumor, here defined as

the sum of DC1/DC2 using CD24+ CD11c+ gating. We found no

effect on TAM1 and TAM2 repopulation, suggesting a unique

requirement of CSF2 (GM-CSF) for tumoral DC development

(Figure 4E) while no requirement for CSF-3 was found for any

of the four APCs (Figure S3).

As DCs are prototypically driven by GM-CSF or FLT3-ligand

(FLT3L), we assessed cytokine sufficiency to drive DC popula-

tions at the tumor using B16 melanoma tumor models engi-

neered to express GMCSF or FLT3L. While GMCSF expression

by the tumor drastically skewed the proportion of CD11b+

DC1, FLT3L expressing tumors drove unique expansion of the

rare CD103+ DC2 at the tumor (Figure 4F).

Unique Antigen Processing and Presentation
Capabilities of CD103+ DC2
Having established the lineage requirements of the different

APCs, we then assessed their ability to initiate, engage, and sus-

tain T cell responses. To parse the cells with regard to antigen

processing, presentation, and costimulation, we analyzed tran-

script and protein levels of genes involved in these pathways

using RNASeq data from Figure 2. Differences were consider-

able, across broad swaths of potential APC function (Figure 5A).

Notably, while surface levels of molecules involved in regulating

T cell responses, including CD80, CD86, and 2B4, were compa-

rable between populations, CD103+ DC2s showed distinct

transcriptional signatures consistent with heightened cross-pre-

sentation, enhanced costimulation, and increased expression of

chemokines that would be expected to enhance T cell interac-

tions (Figures 5A, 5B, and S4A). There were no major differences

in MHCI and MHCII expression between the APCs with the

exception of slightly reduced MHCI on CD103+ DC2 (Figure 5C).

However, significant differences in phagocytic capacity were

observed in CD103+ DC2s compared with TAM1/TAM2,

measured exogenously by ex vivo dextran uptake from ectopic

tumors (Figure 5D).

As DC maturation and phagocytic capacity are often inversely

correlated, we hypothesized that the decreased phagocytic

capacity of CD103+ DC2 might correspond to a more mature

DC with increased cross-presentation of antigen (Guermonprez

et al., 2002). Efficient cross-presentation of antigen in DCs relies

on NOX2 to regulate phagasomal pH, thereby preventing

destruction of T cell peptides, which can be determined using

a ratiometric assay comparing intracellular fluorescence inten-

sity of a pH-sensitive and pH-insensitive fluorophore following

phagocytosis (Savina et al., 2006). We therefore generated a

B78 tumor line expressing a fusion of a pH-sensitive GFP

(pHluorin, quenched below pH 6.5) and a pH-insensitive fluoro-

phore (mCherry). By analyzing pHluorin intensity alone within

the mCherry+ compartment of each population, we found that

only the ‘‘DC’’ populations maintained pHluorin in an alkaline

(fluorescent) environment; comparing the ratio of pHluorin and

mCherry signals showed that CD103+ DC2 maintained the

most basic endocytic compartment, while TAM1 and TAM2 pop-

ulations displayed highly acidic and therefore degradative

phagocytic pathways (Figure 5E). In addition to the increased

alkaline phagosomal lumen of CD103+ DC2, these cells demon-

strated differential expression of the proinflammatory cytokine

interleukin-12 (IL-12) and absence of anti-inflammatory IL-10
(Figures 5F, 5G, and S4B). Together, all of these features suggest

CD103+ DC2s are highly poised for efficient antigen cross-pre-

sentation to CD8+ T cells.

CD103+ DC2s Are Superior Stimulators of Naive and
Activated CD8+ T cells
Previously, we found that the aggregate antigen-ingesting

myeloid compartment could stimulate naive but not previously

activated CD8+ T cells when taken directly from tumors (Engel-

hardt et al., 2012). However, based on the unique cross-presen-

tation phenotype of CD103+ DC2, we sought to test the T cell

stimulatory capacity of each population, freshly isolated from tu-

mors. After 12 hr of coculture with ovalbumin-specific OT-I CD8+

T cells, the CD103+ DC2 population was the only population

capable of robustly inducing TCR signaling, measured by GFP

expression driven by a Nur77 reporter (Nur77GFP) and CD69

levels in both naive and previously activated OT-I CD8+ T cells.

Importantly, this was consistent in both ectopic and sponta-

neous mouse models (Figures 6A and S5A). Extended coculture

of dye-labeled OT-I CD8+ T cells revealed that CD11b+ DC1 and

CD103+ DC2 populations were the most robust stimulators of

naive CD8+ T cell proliferation and demonstrated that nearly

the entire stimulatory capacity previously identified in phagocy-

tosing tumor myeloid cells lies within these DC (Figures 6B,

6C, S5B, and S5C). Interestingly, CD103+ DC2 were uniquely

capable of inducing strong proliferation of established CTLs,

which were not stimulated by the other populations, indicating

that CD103+ DC2 were superior cross-presenting stimulators

of CTLs in the tumor (Figures 6D, 6E, and S5D, respectively).

Ultimately, at their normally low frequencies in total tumor

isolate, CD103+ DC2s remain unable to drive proliferation of

CTLs (Figure S5E; Engelhardt et al., 2012). Additionally, none

of the APC subsets induced CD4+ T cell proliferation directly

from the tumor (Figures 6F, 6G, and S5F). However exogenous

peptide did restore DC1 and DC2 capacity to stimulate prolifer-

ation, suggesting these DCs may not be inherently incapable of

CD4 T cell stimulation (Figure S5G). Critically, this identifies the

unique capacity of CD103+ DC2 within the tumor to uptake, pro-

cess, and cross-present tumor antigen to robustly stimulate

CTLs. This challenges the simple concept that tumors contain

only weak or suppressive myeloid populations.

CD103+ DC2 Localization and T Cell Interactions
Revealed by Intravital Imaging
Given the unique ability of the rare CD103+ DC2s to stimulate

T cells, we sought to understand the spatial organization of these

cells within tumors and their interaction dynamics with T cells

both in vivo and in vitro. To differentiate these populations in

living spontaneous tumors in vivo, the PyMTchOVA allele was

crossed on to Cx3cr1-eGFP and Cd11c-mCherry alleles, gener-

ating three uniquely fluorescent populations in the myeloid

compartment (Figure 7A). Both DC1 and DC2 subsets were

marked red (mCherry only), while TAM1 and TAM2 populations

were green (eGFP only) and yellow (mCherry and eGFP), respec-

tively. Using this model, with two-photon intravital imaging, we

observed that TAM1 and TAM2 populations are preferentially

marginating tightly on tumoral lesions. This zone is one where

we had previously found T cells to be preferentially captured (En-

gelhardt et al., 2012). In contrast, DC subsets typically were
Cancer Cell 26, 1–15, November 10, 2014 ª2014 Elsevier Inc. 5
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Figure 3. Differential IRF4, IRF8, and Batf3 Requirements for Tumor-Infiltrating APC Populations

(A) Ectopic PyMT-VO tumors from an Irf8�/� (KO) compared with control (wild-type [WT]). Relative cell proportions are shown as a percentage of total MHCII+

cells. Data are pooled from individual mice (n = 6) from two independent experiments.

(B) Ectopic B78chOVA tumors in Irf4f/f x Cd11c-Cre+ host compared with Cre-negative littermates. Relative cell proportions are shown as a percentage of total

MHCII+ cells. Data are pooled from individual mice (n = 7) from two independent experiments.
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found in separate collagen-rich zones distal to the tumor lesions,

making up nearly 70% of all distally localized APC (Figure 7B).

Since this approach did not fully differentiate between CD11b+

DC1 and CD103+ DC2 cells among those on the margins of tu-

mor foci, we sought to determine whether the few red DCsmight

preferentially represent exclusively one or the other subset. To

delineate the subsets in situ, we utilized live tumor slice imaging,

with anti-CD11b antibody staining. Using this, we could distin-

guish CD11b+ DC1 from CD103+ DC2 subsets in situ in the pres-

ence of the red/green fluorescent reporters and found that both

CD11b+ and CD11b� DCs were present at these locations

(Figure 7C; Movie S1). We conclude that while TAMs generally

represent the dominant cell type at the tumor margin pro-CTL

stimulatory APCs nevertheless can be found there, albeit in

very low numbers.

Our previous data demonstrated that incoming CTLs engaged

in arrest behavior at the tumor margin, and we sought to deter-

mine whether these might be taking place with DCs or TAMs

or both. In vivo T cell dynamics were analyzed in the red/green

reporter system by adoptive transfer of CFP expressing OT-I

CD8+ T cells into spontaneous breast tumor-bearing mice, for

either intravital or live slice imaging. We observed stable T cell in-

teractions largely confined to the tumor margins, as previously

described (Boissonnas et al., 2013; Engelhardt et al., 2012) (Fig-

ures 7D and 7E; Movie S2). Although TAM1 interactions domi-

nated all interactions scored, DCs and TAM2s were also well

represented in T cell arrests. This demonstrates that DC1/DC2

in the tumor-proximal regions are not incapable nor physically

excluded from engaging T cells within tumors but did raise a

fundamental question of whether either is intrinsically more

capable of engaging T cells.

To answer this, we divorced APC selection from the physical

constraints of the tissue and digested tumor to make single-

cell suspension and introduced in vitro activated OT-I CTLs

and allowed them to form antigen-specific couples. We then

quantified the percentage of each APC population that was

occupied with a T cell by flow cytometry. This revealed that

OT-I T cells couple preferentially with CD103+ DC2 and TAM1/

TAM2 subsets (Figure 7F, left panel). However, due to the high

frequency of TAM1/TAM2, most T cell-APC couples are formed

with TAM1/TAM2 cells (Figure 7F, right panel). We conclude that

DC2s contribute to T cell interactions in tumors and when

present near the margin are capable of competing for T cell

occupancy.

Rare Tumor CD103+ DC2s Are Required for Efficient
Adoptive T Cell Therapy
We were surprised to find that the proportions of CD11b+ DC1

and CD103+ DC2 were nearly inverted in a spontaneously re-

gressing EG7 tumor model, hereto after referred to as EG7.2,

as compared with a fully aggressive and outgrowing line

EG7.1. While the aggressively growing tumors maintained the
(C) Ectopic B78chOVA tumors in Batf3 KO compared with WT. Relative cell pro

individual mice (n = 6).

(D) Ectopic B78chOVA tumors in Zbtb46-DTRmice receiving acute 24 hr depletio

MHCII+ cells. Data are pooled from individual mice (n = 6) from two independent

All data are representative flow cytometric analysis of CD11b+DC1 and CD103+D

as mean ± SEM. Statistical significance is indicated by *p < 0.05, **p < 0.01, ***p
relative proportions of DCs we observed in all other aggressive

tumors (Figure S6A), the spontaneously regressing model con-

tained unusually high numbers of the CD103+ DC2 (Figure S6B).

We also observed increased tumor growth in the Irf8 KO tumor

model, which lack CD103+ DC2, but not in the Irf4 conditional

KO model (Figures S6C and S6D). These together suggest that

DC2 tumoral abundance may play an important role in tumor

control; however, the differences in outgrowth may be caused

by many variances in these tumors beyond their populations of

myeloid cells and their ability to stimulate CTLs. To formally

test whether the CD103+ DC2s are necessary for efficient CTL-

mediated tumor regression, we turned to the outgrowing

EG7.1 tumor model and performed adoptive T cell therapy of

activated tumor specific T cells (Helmich and Dutton, 2001).

We performed these experiments in zDC-DTR mice, which

permitted us to specifically ablate CD103+ DC2 in the tumor (Fig-

ure 3D). In order to isolate the effect of the CD103+ DC2 to the

site of the tumor and eliminate any effect of LN priming, we

designed the experiment to include two strategies: (1) use of

activated OT-I CD8+ CTL blasts, which do not require priming

in the LN and typically do not traffic there and (2) treatment of

animals with the SIP1R antagonist FTY-720, which prevents LN

exit of rare transferred CTL T cells that traffic to the LN. The effect

of FTY-720 alone had minimal effects on transferred CTLs to

mediate tumor regression (Figure S6E). However, we found

that ablation of CD103+ DC2s in the context of FTY-720 had a

significant effect on the ability of CTLs to mediated efficient

tumor regression, massively slowing T-cell-mediation tumor

regression (Figure 8A).

Signatures of Intratumoral CD103+ DC2 Abundance
Predict Outcome across Human Cancer
To determine whether a critical role for CD103+ DC2 abundance

translated to human tumors, we took advantage of TCGA data

(Weinstein et al., 2013; Hoadley et al., 2014) that quantifies rela-

tive gene expression from numerous human cancer types with

matched outcome data. We used our RNAseq data to select

for high level transcripts that characterized CD103+ DC2 and

also selected a subset of genes that characterized TAM1/

TAM2/CD11b+DC1 cells but were deficient in CD103+ DC2.

We identified human homologs of those mouse genes and

assayed expression of these genes in TCGA data from all cancer

types to assess prognostic associations. In a proportional haz-

ards survival analysis, adjusting the model for cancer type as a

covariate, we observed that the individual genes from these pop-

ulations had only modest prognostic benefits (expressed as haz-

ard ratio [HR]). In order to represent the relative proportion of the

two cell types, we defined a ratio of the CD103+ and CD103�

gene expression data and used this as a continuous variable

within the Cox analysis. High expression of this ratio was signif-

icantly associated with increased overall survival (Benjamini-

Hochberg [BH] p = 0.00019) (Figure 8B).
portions are graphed as a percentage of total MHCII+. Data are pooled from

n with DT or PBS. Relative cell proportions are graphed as a percentage of total

experiments.

C2 populations (gated on CD45+, Ly6C�, MHCII+, and CD24+). Data are shown

< 0.001; ns, not statistically significant.
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Figure 4. Differential Reliance on M-CSF and GM-CSF Cytokines by Tumor-Infiltrating APC Populations

(A) qPCR of Csf1r, Csf2rb, and Csf3r expression from sorted APCs. Data are presented as mean D Ct ± SEM calculated from biological triplicates (n = 3) of

individual B78chOVA tumors (N.D., not detected).

(B) Cytometry of tumor APCs after 3 days of aCSF1 (aCSF1, dotted) compared with isotype (filled)-treated tumor animals. Quantified as a percentage of total

tumor CD45+ cells, pooled from individual mice (n = 6) from two independent experiments shown asmean ± SEM. Statistical significance is indicated by *p < 0.05,

**p < 0.01, ***p < 0.001 (ns, not statistically significant).

(C) Schematic of BM progenitor adoptive transfer and contributions to BM, spleen, and tumor.

(D) Representative cytometry of tumor-arriving congenic cells; gated on CD45.2 and following the gating strategy of Figure 1A.

(E) Competitive BM adoptive transfer of WT versus Csf2rb KO GMP progenitors into B78chOVA tumor recipients. Repopulation efficiency is plotted as the

percentage of total transferred cells. This is representative gating of tumor arriving GMP cells, WT (gray), KO (purple). Quantification of tumor-arriving DCs is

defined by CD24+ CD11c+. Data are pooled from two independent experiments and plotted as mean ± SEM from individual tumors (n = 6).

(legend continued on next page)
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This analysis shows that the cell type we identified, when

ratioed with its functional opposite, generates a very strong

prognostic value for outcome across human cancers.

Comparing this ‘‘signature’’ with other previously described ‘‘im-

mune scores’’ shows that the ratio of CD103+/CD103� genes

provides the strongest proimmune survival signal compared

with other current analyses of TCGA data, including those based

on total T cell abundance (Palmer et al., 2006) and that made by

bulk ratio of CD8 T cells to macrophages (CD8/CD68; DeNardo

et al., 2011) (Figure 8C). Our score also compares favorably,

though opposite in prognosis, for those immune scores associ-

ated with poor outcome. It is also notable that CSF1 expression

in tumors in these patients also anticorrelates with the CD103/

BDCA3 gene ratio measure, although it likewise anticorrelates

with total tumor FTL3L levels (Figures S6F and S6G).

Finally, we sought to analyze the TCGA data within individual

cancer types. Adjusting for cancer type, a Kaplan-Meier (K-M)

plot for all 12 cancers in this data set shows the overall benefit

in tumors with a high CD103+/CD103� gene-expression profile

(Figure 8D; unadjusted plot in Figure S6H). The extent of this as-

sociation is particularly profound in breast cancer, head-neck

squamous cell carcinoma, and lung adenocarcinoma (Figures

8E–8G). Overall, this represents an unexpectedly strong immune

signature, the more so as it was derived entirely from empirical

immunoprofiling in mouse tumor models.

DISCUSSION

A critically important feature of this work is that within the diverse

array of myeloid cells at the tumor, a rare population of proim-

mune DCs exists even in immunoevasive tumors. This contrasts

with previous characterizations of the myeloid lineage in tumors

that have highlighted their immunosuppressive functions. This

study puts a face and a name on a specific subset of intratumoral

DCs whose functions one would wish to enhance as part of

immunotherapy and serves to begin to demystify the complexity

of this critical compartment.

This work provides an understanding of the tumoral myeloid

environment as having lineage parallels to other nontransformed

tissues. Significant confusion in the current literature of myeloid

subpopulations results from inappropriate grouping of cells (e.g.,

CD11b+) or from lack of a common method for distinguishing

the various subpopulations (e.g., CD11c expression). Recent

additions to the repertoire of antibody markers and total

expression-array analyses of DCs versus macrophages versus

monocytes provided significant clarity to this situation (Gautier

et al., 2012; Miller et al., 2012). In particular, while conventional

DCs are seen to express one or more of markers such as

CD24, TAMs are better described through surface expression

of F4/80, CD64, and MerTK. To that end, CD11b+ DC1s in tu-

mors appear, by RNA expression and surface expression, to

be more closely allied to macrophages. This proximity of these

cells has been observed in other peripheral sites (Gautier et al.,

2012). In general, a remarkable similarity in IRF4-, IRF8-, and
(F) Cytometry of CD11b+ DC1 and CD103+ DC2 populations (gated on CD45+, Ly

cytokine-expressing tumors. Populations are presented as the percentage of to

periments, plotted as mean ± SEM from individual tumors (n = 6).

See also Figure S3.
Batf3-dependent origins and surface phenotypes suggests

that the overall origins and distinctions of tumor-infiltrating

myeloid cells is quite similar to counterparts in normal tissues.

Our studies confirm earlier work showing that mice deficient of

Batf3 failed to spontaneously clear highly immunogenic tumors

(Hildner et al., 2008). However, our studies provide the additional

insight that the key populations defined by Batf3 and IRF8, but

not IRF4 expression, are not only present and functional within

tumors but in fact are required for productive responses to adop-

tively transferred CTLs generated in vitro, after T cells are already

primed and in the absence of profound LN involvement. This pla-

ces at least some of the key Batf3- and now IRF8-dependent

cells as playing key roles in repriming within the tumor. Thus,

our understanding shifts emphasis from the LN to the tumor for

T cell control. Our work also puts these cells in context in the tu-

mor and shows that, while they may be sporadically present on

the tumor margins where T cells will encounter their APCs, they

are very sparse there. Clinically, this suggests that enhancement

of the intratumoral load of these cells will be an important

cofactor defining the success of adoptive T cell therapies and

broadly that providing restimulation within the tumor represents

an important requirement for T cell function at that site. That the

requirement for CD103 cells is intratumoral is further supported

by our TCGA analysis in which gene-expression data used to

assess prognostic value derive exclusively from mRNA taken

from the tumor but not the LN.

While our data did not show an absolute dependence on

CD103+ DC2 to facilitate adoptive CTL control of tumor

outgrowth, the effect was profound. It is not clear whether resid-

ual T-cell-dependent control in the DT-treated cohort might

represent myeloid-independent activity of these cells, a

compensatory role by other myeloid cells (e.g., CD11b+ DC1,

which stimulate CTL extremely weakly in vitro) or merely our

inability to fully eliminate the CD103+ DC2 population. To that

last possibility, it will be increasingly important to more effec-

tively manipulate the relative population densities of myeloid

cells, sparing the CD103+ DC2 or even providing means to

enhance them. Our demonstration of enhanced CD103+ DC2

generation in FTL3L expressing tumors provides a compelling

rationale as to why such therapy may work and indeed may be

synergistic with T cell therapies such as anti-CTLA4 (Curran

and Allison, 2009). Conversely, the efficacy of a-CSF1 therapies

(Ries et al., 2014; Strachan et al., 2013) may be in part due to the

sparing of CD103+ DC2 under such blockade, as demonstrated

in our work.

Despite significantly increased clarity of the identities of intra-

tumoral myeloid populations and their similarities to those in

normal tissues, much remains to be elucidated concerning the

additional functional diversity of the intratumoral APCs. In partic-

ular, the role of CD11b+ DC1 in the tumor remains obscure. Their

transcriptional profiling and surface markers may place them

closer in identity to TAMs as compared with CD103+ DC2, which

is found in other macrophage populations from healthy periph-

eral sites (Gautier et al., 2012). We also note that these highly
6C� MHCII+, CD24+) between ectopic B16-F10, B16-GMCSF, and B16-FLT3L

tal MHCII+ cells for each tumor. Data are pooled from three independent ex-
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Figure 5. Unique Antigen Processing and Presentation Capabilities of CD103+ DC2

(A) Heat map of log2-transformed expression from RNAseq across populations for selected genes involved in cross-presenting, cytokine and chemokine pro-

duction, and costimulation. The color scale is defined as green = bottom 20th percentile and red = top 80th percentile, with 20th to 80th percentile graduated and

centered at yellow (50th percentile). Data are from biological triplicates of sorted cells.

(B) Cytometry of surface protein levels of ligands for T-cell-regulatory molecules (colored) as compared with respective isotypes (gray).

(C) Cytometry of MCHI and MHCII (colored) expression compared with respective isotype (shaded).

(legend continued on next page)
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Figure 6. CD103+ DCs Are Superior T Cell

Stimulators for Naive and Activated CD8+

T cells

(A) Flow cytometry of early activation markers

Nur77GFP and CD69 (12 hr) on naive or previously

activated OT-I CD8+ T cells cultured on sorted

APC populations directly from tumors.

(B) Representative cytometry of naive OT-I CD8+

T cell proliferation, measured by dye dilution of

eFluor670 plotted against Nur77GFP (as measure

of TCR triggering), at 72 hr following coculture with

tumor APC populations. The total cell yield counts

are listed above the graphs.

(C) Histogram overlay of naive T cell proliferation

between tumor APCs.

(D) Representative cytometry of T cell proliferation,

measured by dye dilution of eFluor670 plotted

against Nur77GFP at 72 hr for previously activated

OT-I CD8+ T cell blasts cultured on tumor APC

populations. Total cell yield counts are listed

above the graphs.

(E) Histogram overlay of previously activated OT-I

CD8+ T cell proliferation across tumor APCs.

(F) Representative cytometry of T cell proliferation,

measured by dye dilution of eFluor670, at 72 hr for

naive OT-II CD4+ T cells cultured on tumor APC

populations. Representative flow plots are from

two independent experiments.

(G) Histogram overlay of naive OT-II CD4+ T cell

proliferation across tumor APCs.

All data are from the ectopic B78chOVA

tumor model: T cells + BMDC (shaded gray),

T cells + BMDC + SL8 (unshaded gray), T cells +

tumor APCs (respective colored histograms).

These are plated at 20,000 T cells: 4,000

APC. Representative flow plots are from four in-

dependent experiments, unless noted. See also

Figure S5.
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resemble recently described ‘‘DC-Th2,’’ defined by their reliance

on the transcription factor IRF4, expression of CD301b and

PDL2, and ability to effectively prime Th2 responses (Gao

et al., 2013; Kumamoto et al., 2013; Williams et al., 2013). At

present, we failed to find a DC population that could robustly

stimulate CD4 T cells when taken directly from the tumor; how-

ever, DC1 and DC2 could be rescued upon add back of peptide,

suggesting either that the MHCII processing pathway is not

highly active in these cells or that our digest conditions affect

MHCII antigen loading. Regardless, this may reinforce the hy-
(D) Cytometry of ex vivo dextran uptake across populations. The gray shows no d

shows dextran uptake at 37�C, displayed in triplicate. Delta geometric mean fluore

representative of two independent experiments (n = 6).

(E) Cytometry analysis of relative pH of endocytic compartments across populat

mCherry-pHlourin. Representative histograms show florescence of pHluorin in m

histograms are respective populations from a non-pHluorin expressing control tum

mCherry fluorescence. Data are presented as mean ratio ± SEM, pooled from th

(F) Intracellular cytokine stain of IL-12 in populations. The percentage of IL-12+ ce

experiments (n = 3) and plotted as mean ± SEM. Statistical significance is indica

(G) Il12b and Il10 transcript levels, measured by qPCR. Data are presented as me

(N.D., not detected).

All data are from the ectopic B78chOVA tumor model. See also Figure S4.
pothesis that the absence of effective T cell help and its atten-

dant gc cytokine production are critical missing links in the tumor

microenvironment.

Our study of these cell types now brings to the forefront many

spatiotemporal issues about how the various myeloid popula-

tions interface with tumors, with one another, and with T cells.

While it is clear from our imaging that the marginating cells are

dominated by TAM1 and TAM2, the nature of ‘‘APC selection’’

by T cells is not fully resolved. Do CTLs with particular activation

choose particular subsets of myeloid cells, and conversely, does
extran. The light histogram shows dextran binding at 4�C, and dark histogram

scence intensity (gMFI) for each population is plotted asmean ± SEM. Data are

ions. B78 tumor cells were transfected with the ratiometric pH construct, N1-

Cherry+ cells, where less pH-GFP represents a more acidic environment. Gray

or (B78 parental). Data are summarized as the ratio of gMFI between GFP and

ree independent experiments.

lls is quantified across each population. Data are pooled from two independent

ted by *p < 0.05.

an D Ct ± SEM calculated from biological triplicates (n = 3) of individual tumors
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Figure 7. Intravital and Slice Imaging Re-

veals that CD11b+ DC1 and CD103+ DC2

Are Sparse Near Tumor Margins yet Can

Interact with T Cells When Present There

(A) Representative cytometry of tumor APCs in

PyMTchOVA x Cx3cr1-eGFP 3 Cd11c-mCherry.

Populations as previously defined are plotted as

mCherry versus GFP. Green, yellow, and red cir-

cles indicate the fluorescent profile that each

population displays in this model. Red (mCherry

only cells), yellow (mCherry and GFP double-

positive cells), and green (GFP only cells) are

shown. By flow cytometry, DC1/DC2 populations

fall in the Cherry-only population, while TAM1 and

TAM2 comprise the yellow and green populations,

respectively.

(B) Intravital 2-photon representative still image of

an early carcinoma lesion from a PyMTchOVA 3

Cx3cr1-eGFP 3 Cd11c-mCherry reporter. Re-

gions indicated with a dashed line, marked either

distal or marginating to lesions, were determined

with a combination of mCherry fluorescence and

collagen structure. Collagen fibers are marked

(white) by second harmonic generation. The scale

bar represents 50 mm. (Inset) Quantification of the

proximal/distal location of the APCs within the tu-

mor. Data pooled from four independent imaging

runs, presented as mean ± SEM.

(C) Representative confocal still image from live

tumor slices in PyMTchOVA 3 Cx3cr1-eGFP 3

Cd11c-mCherry tumors, stained with CD11b-

A647 antibody. mCherry only cell (arrowhead DC2,

red) and mCherry+ CD11b+ cell (arrow DC1,

purple) in the tumor. Scale bar 15 mm.

(D) Representative image sequence of CFP ex-

pressing OT-1 CD8+ T cells (blue) dynamically in-

teracting with APC cells in the PyMTchOVA 3

Cx3cr1-eGFP3Cd11c-mCherrymodel by live slice

confocal imaging 4 days after T cell transfer at 0, 30,

and 60 min. The arrows indicate T cell interactions

with red (DC1/DC2), green (TAM1), or yellow (TAM2)

cells. The scalebar represents30mm.The last panel

displays time projection of CFP expressing T cells

through 60 min imaging timeframe, with outline

color dictated by APC of contact.

(E) APC-T cell contacts in vivo as a percentage of the total T cell couples observed. Accumulated data are shown of four different positions imaged for 30 min in

two independent intravital 2 photon imaging runs. Contacts were scored manually by counting physical contact made between T cells and red, yellow, and green

APCs. The color of bar represents the APC of contact (red: CD103+, CD11b+ DC1; green: TAM1; yellow: TAM2).

(F) Ex vivo T-cell-coupling assay with digested tumor positively selected for CD45+ cells with previously activated OT-I CD8+ T cell. Data are calculated as

percentage of T cells couples within each of the populations (left) and as a total percentage of T cell couples (right). Data are pooled from two independent

experiments, plotted as mean ± SEM.

See also Movies S1 and S2.
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the in situ interaction of T cells with CD103+ DC2 give them abil-

ities to kill so long as they do not encounter a TAM in the interim?

Many of these types of questionswill require elaboration of spec-

tral labeling methods. In addition, these types of approaches will

require significant adoption and/or development of biosensor-

like reporters to determine where and when complete TCR

signaling is taking place.

Finally, a very important findingof this study relates to theappli-

cability of the myeloid delineation to multiple human tumors. Us-

ing bioinformatics based on these populations, we observed that

CD103+ DC2-enriched transcripts, taken from mouse models

and expressed as a ratio with an equivalent selection from the

TAM/DC1 populations, provides a strong prognostic signal in
12 Cancer Cell 26, 1–15, November 10, 2014 ª2014 Elsevier Inc.
TCGA data, across multiple tumor types. The fact that this

‘‘signature’’ correlateswith patient survival better than other pub-

lished signatures provides an additional and compelling reason

to suggest that this population is critical for robust tumor control

inmice and humans. Clearly, additional profiling of these popula-

tions in context of immunotherapies will be required to test this

further and should be undertaken alongside all further immuno-

therapy trials. It will be particularly interesting to determine

whether patients havingCD103/BDCA3 ‘‘high’’ tumorswill repre-

sent better responders to checkpoint blockade. In sum, it is clear

that these rare cells should now be a target to augment their

numbers as well as a biomarker that may define those whose im-

mune response is well positioned to eliminate cancers.
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Figure 8. Rare CD103+ DC2 Population at the Tumor Is Required for Efficient Adoptive CTL Therapy

(A) Tumor growth curve plotted as tumor area (mm2) over time for EG7.1 in zDC-DTR hosts. The arrows indicate time of intraperitoneal DT/PBS administration,

and intravenous transfer of 5 3 106 previously activated OT-I CD8+ T cells. DT/PBS was subsequently administered every third day, and FTY-720/saline was

subsequently administered every other day throughout time course. Representative data are presented as mean tumor area ± SEM (n = 4) from two independent

experiments. Statistical significance is indicated by *p < 0.05.

(B) Comparison of prognostic value of CD103+/CD103� ratio gene signal as compared with the individual genes (either CD103+ specific, green, or TAM1/TAM2/

CD11b DC1 specific genes, red) using TCGA data sets in a multivariate COX proportional hazards survival analysis adjusting for cancer type as a covariate. Data

are expressed as HR with 95% confidence intervals, where a value <1 means increased overall survival (OS); >1 means decreased OS for genes with BH

p values < 0.05 (bolded values).

(C) Comparison of the prognostic value of the CD103+/CD1033� ratio gene signal with several published prognostic gene signatures using TCGA data sets in a

multivariate COX proportional hazards survival analysis adjusting for cancer type as a covariate. Data are expressed as HR with 95% confidence intervals, where

a value <1 means increased overall survival (OS); >1 means decreased OS for genes with BH p values < 0.05.

(D) K-M plot across all 12 cancer types in human TCGA data sets, adjusting for cancer type based on high CD103+/CD1033� gene ratio and low CD103+/

CD1033� ratio expressers (median split/cancer).

(E) K-M plot for overall survival of breast cancer patients in TCGA data set. Data are parsed on high CD103+/CD1033� gene ratio and low CD103+/CD1033� ratio

expressers.

(F) K-M plot for overall survival of head and neck squamous cell carcinoma patients in TCGA data set. Data are parsed on high CD103+/CD1033� gene ratio and

low CD103+/CD1033� ratio expressers.

(G) K-M plot for overall survival of lung adenocarcinoma patients in TCGA data set. Data are parsed on high CD103+/CD1033� gene ratio and low CD103+/

CD1033� ratio expressers.

See also Figure S6.
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EXPERIMENTAL PROCEDURES

Mouse Tumors

PyMT-ChOVA transgenic C57BL/6 founder mice were as described (Engel-

hardt et al., 2012), and offspring were screened for the PyMT-ChOVA

transgene by PCR and monitored for tumors and used at 20 to 30 weeks of

age. B78ChOVA is a variant of B78 (Graf et al., 1984) and is generated and

used as described in Supplemental Experimental Procedures. All additional

strain information can be found in supplemental methods. All mice were main-

tained under specific pathogen free (SPF) conditions and treated in accor-

dance with the regulatory standards of the NIH and American Association of

Laboratory Animal Care standards and are consistent with the UCSF Institu-

tion of Animal Care and Use Committee (IACUC approval: AN106779-01A).

Flow Cytometry

All antibodies were purchased from BD Pharmingen, eBioscience, Invitrogen,

Biolegend, and the UCSF hybridoma core or were produced in the Krummel

Lab. For surface staining, cells were incubated with anti-Fc receptor antibody

(clone 2.4G2) and stained with antibodies in PBS + 2% fetal calf serum for

30 min on ice. Viability was assessed by staining with fixable Live/Dead Zombie

(Biolegend) or 40,6-diamidino-2-phenylindole. For intracellular staining, mice

were injected with 10 mg/g of body weight with Brefeldin A (Cayman) 6 hr prior

to harvest. Cells were stained with antibodies against surface markers and

then fixed with 2% paraformaldehyde for 10 min at 25�C and permeabilized

with 0.2%saponin then stainedwith target antibody. All flow cytometry was per-

formed on a BD Fortessa flow cytometer. Analysis of flow cytometry data was

doneusingFlowjo (Treestar). Cell sortingwasperformedusing aBDFACSAria II.

Human Samples

Tissue was vigorously minced with surgical scissors and transferred to a 25 ml

Erlenmeyer with magnetic stir bar with 3 mg/ml collagenase A (Roche) and

50 U/ml DNase I (Roche) per 0.3 g of tissue for 1 hr at 37�C and 5% CO2

with constant agitation. Samples are then filtered through a 70 mm filter,

spun down, and resuspended for staining. For all human samples, informed

consent was obtained from all subjects, and work was performed in accor-

dance with institutional review board (IRB) approval (IRB number 13-12246,

12/06/2013-12/05/2014).

TCGA Bioinformatics Analysis

Clinical expression analysis uses genome-wide mRNA levels (Illumina mRNA-

seq) from 3,602 patient tumor samples representing 12 cancer types (845

breast, 265 ovarian, 303 head and neck squamous, 122 bladder, 168 glioblas-

toma, 190 colon, 173 acute myeloid leukemia, 72 rectal, 355 lung adenocarci-

noma, 259 lung squamous, 480 kidney, and 370 uterine cancers), normalized,

and combined into a single data set by the TCGA PanCancer working group as

published (Weinstein et al., 2013; Hoadley et al., 2014) (data are in the

TCGA Data Portal [https://tcga-data.nci.nih.gov/tcga/] and available as

syn1715755 at https://www.synapse.org/). The CD103+/CD103� ratio signa-

ture is calculated as the log of the mean expression of CD103+ DC genes

divided by the mean expression of the CD103� DC genes, followed by Z score

standardization (mean = 0, SD = 1; gene list in Figure 8C). We also evaluate

published T cell (Palmer et al., 2006), proliferation (Wolf et al., 2014), CSR/

wound (Chang et al., 2005), and gamma interferon (Viigimaa et al., 2010) sig-

natures as published, along with a CD8/CD68 expression ratio (DeNardo

et al., 2011). Overall survival data were obtained from the TCGA portal (down-

loaded 6/2013) (Weinstein et al., 2013) and survival analysis performed using

Cox proportional hazards modeling in a multivariate model adjusting for can-

cer type. Log-rank p values are used to assess significance after adjusting

for multiple comparisons using the BH method (Bejamini and Hochberg,

1995). K-M survival plots are generated using the Survival package in R. In

the all-data KM plot (Figure 8E), we adjusted for cancer type by classifying

each sample as ‘‘high’’ or ‘‘low’’ using that cancer types’ median value of

the CD103+/CD103� ratio signature.

Statistical Analysis

Statistical analyses were performed using GraphPad Prism software. Unless

specifically noted, all data are representative of more than three separate ex-

periments. Error bars represent SEM calculated using Prism and are derived
14 Cancer Cell 26, 1–15, November 10, 2014 ª2014 Elsevier Inc.
from triplicate experimental conditions. Specific statistical tests used were

paired and unpaired t tests, and all p values less than 0.05 were considered

statistically significant.
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