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Learned adaptive multiphoton illumination
microscopy for large-scale immune response
imaging
Henry Pinkard 1,2,3,4✉, Hratch Baghdassarian 5, Adriana Mujal 5, Ed Roberts 5, Kenneth H. Hu5,

Daniel Haim Friedman6, Ivana Malenica 3,7, Taylor Shagam5, Adam Fries5, Kaitlin Corbin5,

Matthew F. Krummel 5,8 & Laura Waller 2,3,8

Multiphoton microscopy is a powerful technique for deep in vivo imaging in scattering

samples. However, it requires precise, sample-dependent increases in excitation power with

depth in order to generate contrast in scattering tissue, while minimizing photobleaching and

phototoxicity. We show here how adaptive imaging can optimize illumination power at each

point in a 3D volume as a function of the sample’s shape, without the need for specialized

fluorescent labeling. Our method relies on training a physics-based machine learning model

using cells with identical fluorescent labels imaged in situ. We use this technique for in vivo

imaging of immune responses in mouse lymph nodes following vaccination. We achieve

visualization of physiologically realistic numbers of antigen-specific T cells (~2 orders of

magnitude lower than previous studies), and demonstrate changes in the global organization

and motility of dendritic cell networks during the early stages of the immune response. We

provide a step-by-step tutorial for implementing this technique using exclusively open-source

hardware and software.
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Imaging of cells in vivo is an essential tool for understanding
the spatiotemporal dynamics that drive biological processes.
For highly scattering tissues, multiphoton microscopy

(MPM) is unique in its ability to image deep into intact samples
(200 μm–2 mm, depending on the tissue). Because of the non-
linear relationship between excitation light power and fluores-
cence emission, scattered excitation light contributes negligibly
to the detected fluorescence emission. Thus, localized fluor-
escent points can be imaged deep in a sample in spite of a large
fraction of the excitation light scattering away from the focal
point, by simply increasing the incident excitation power1

(Fig. 1a).

The dual problems photobleaching and photodamage are an
inescapable part of every fluorescence imaging experiment. The
concept of a “photon budget” is often used to express the inherent
trade-offs between sample health, signal, spatial resolution, and
temporal resolution, and a widely pursued goal is to make
microscopes that are as gentle as possible on sample while still
generating the contrast necessary for biological discovery2. These
problems are an especially acute concern in MPM since, unlike in
single-photon fluorescence, they increase supra-linearly with
respect to the intensity of fluorescence emission3,4.

When imaging deep into a sample using MPM, excitation light
focusing to different points in the sample will be subjected to
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Fig. 1 Learned adaptive multiphoton illumination (LAMI). a In vivo multiphoton microscopy requires increasing laser power with depth to compensate for
the loss of fluorescence caused by excitation light being scattered. b Our LAMI method uses the 3D sample surface as input to its neural network. We map
it by selecting points on XY image slices at different Z positions (top) to build up a 3D distribution of surface points (middle) that can be interpolated.
c Training uses samples seeded with cells with the same fluorescent label (standard candles), which is imaged with a random amount of power. A 3D
segmentation algorithm then isolates the voxels corresponding to each standard candle. The mean brightness of these voxels, position in XY field of view,
and a set of physical parameters (a histogram of propagation distances through the tissue to the focal point at a specific angle of inclination to the optical
axis (ϕ)) are concatenated into a single vector for each standard candle. The full set of these vectors is used to train a neural network that predicts
excitation laser power. (Bottom) After training, subsequent samples need not be seeded with standard candles. The network automatically predicts point-
wise excitation power as a function of the sample geometry and a user-specified target brightness.
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different amounts of scattering, and the excitation laser power
must be increased in order to maintain signal. Failing to increase
sufficiently will lead to the loss of detectable fluorescence.
Increasing too much subjects the sample to unnecessary photo-
bleaching and photodamage, with the potential to disrupt or alter
the biological processes under investigation. If done improperly,
this can even result in visible burning or destruction of the sample
(Supplementary Movie S1). This problem is especially pro-
nounced in highly scattering tissue (e.g., in lymph nodes) because
the appropriate excitation power has more rapid spatial variation
compared to less scattering tissues.

Adaptive optics (AO) represents one strategy for addressing
this challenge5,6. By pre-compensating the shape of the incident
excitation light wavefront based on the scattering properties of
the tissue, the fraction of incident light that reaches the focal
point increases, lessening the need to increase power with depth.
However, AO still suffers from an exponential decay of fluores-
cence intensity with imaging depth when using constant
excitation1,6, so an increase in incident power with depth is still
necessary.

Alternatively, instead of minimizing scattering with AO,
adaptive illumination techniques modulate excitation light
intensity to ensure the correct amount reaches the focus. To make
the best use of a sample’s photon budget, these methods should
increase power to the minimal level needed to yield sufficient
contrast, but no further than this to avoid the effects of photo-
bleaching and photodamage.

Most commercial and custom-built multiphoton microscopes
have some capability to increase laser power with depth, either
using an exponential profile or an arbitrary function. For a flat
sample (e.g., imaging into brain tissue through a cranial window),
these techniques work well. The profile of fluorescence decay with
depth can be approximated by an exponential or heuristically
defined for an arbitrary function, by focusing to different depths
in a sample and manually specifying increases. However, this task
is more complex for a curved or irregularly-shaped sample, in
which such profiles shift as the height of the sample varies and
change shape in different areas of the sample.

A more advanced class of methods for adapting illumination
uses feedback from the sample during imaging. This strategy has
been employed previously in both confocal7 and multiphoton8,9

microscopy. The basic principle is to implement a feedback cir-
cuit between the microscope’s detector and excitation modula-
tion, such that excitation light power is turned off at each pixel
once a sufficient number of photons have been detected. How-
ever, this approach does not account for fluorophore brightness
and labeling density; thus, it is impossible to disambiguate weak
fluorophores (e.g., a weakly expressed fluorescent protein)
receiving a high dose of incident power from strong fluorophores
(e.g., a highly expressed fluorescent protein) receiving a low dose.
Not only does this run the risk of unnecessarily depleting the
photon budget, it can also lead to over-illumination and photo-
damage if left unchecked. To prevent photodamage, a heuristic
user-specified upper bound is set to cap the maximum power.
Such an upper bound can vary by over an order-of-magnitude
when imaging into highly scattering thick samples. Thus, apply-
ing this approach to image 100s of μms deep in such samples still
requires additional prior knowledge about the attenuation of
fluorescence in different parts of a sample.

The difficulties of adaptive illumination in non-flat samples
thus create several problems. First, the range over which sufficient
contrast can be generated is limited to the sub-region where an
appropriate function to modulate power can be ascertained and
applied by the hardware. Second, incorrect modulations can
deplete the photon budget and cause unnecessary photodamage,
with unknown effects on the processes under observation.

In intravital imaging of the popliteal lymph node, an important
model system for studying vaccine responses, the constraint on
imaging volumes imparts an unfortunate bias. Previous studies of
T cell dynamics in intact lymph nodes have increased the density
of transferred monoclonal T cells in order to achieve sufficient
numbers for visualization (106 or more) within the limited ima-
ging volume of MPM. This number is 2–3 orders-of-magnitude
more than the number of reported clonal precursor T cells
(103−104) under physiological conditions10,11. It is well estab-
lished that altering precursor frequencies changes the kinetics and
outcome of the immune responses12–15, but it is unknown how
these alterations might have affected the conclusions of previous
studies.

Here, we describe a data-driven technique for learning the
appropriate excitation power as a function of the sample shape,
and provide a simple hardware modification to an multiphoton
microscope that enables its application. Our method can provide
10–100× increase in the volume to which appropriate illumina-
tion power can be applied in curved samples such as lymph
nodes, and a reproducible way to automatically apply the mini-
mal illumination needed to observe structures of interest, thereby
conserving the photon budget and minimizing the perturbation
to the sample induced by the imaging process. Significantly, our
method neither requires the use of additional fluorescence pho-
tons to perform calibration on each sample, nor specialized
sample preparation to introduce fiducial markers.

The method uses a one-time calibration experiment to learn
the parameters of a physics-based machine learning model that
captures the relationship between fluorescence intensity and
incident excitation power in a standardized sample, given the
sample’s shape. On subsequent experiments, this enables con-
tinuous adaptive modulation of incident excitation light power as
a focal spot is scanned through each point in the sample. We
describe a simple hardware modification to an existing multi-
photon microscope that enables modulation of laser power as the
excitation light is scanned throughout the sample. This mod-
ification costs <$50 for systems that already have an electro-
optical or accousto-optic modulator, as most modern multi-
photon systems do. We call our technique learned adaptive
multiphoton illumination (LAMI).

Our central insight is inspired by the idea of “standard
candles” in astronomy16, where the fact that an object’s
brightness is known a priori allows its distance to Earth to be
inferred based on its apparent brightness. Analogously, we
hypothesize that by measuring the fluorescence emission of
identically labeled cells (“standard candles”) at different points
in a sample volume under different illumination conditions, we
could use a physics-based neural network to learn an appro-
priate adaptive illumination function that could predicted from
sample shape alone.

Applying LAMI to intravital imaging of the mouse lymph
node, we first show that the learned function generalizes across
differently shaped samples of the same tissue type (e.g., one
mouse lymph node to another). Moving to a new tissue type,
which would attenuate light differently, would require a new
calibration experiment. After a one-time calibration experiment,
the trained neural network can be used to automatically modulate
excitation power to the appropriate level at each point in new
samples, enabling dynamic imaging of the immune system with
single-cell resolution across volumes of tissue more than an
order-of-magnitude larger than previously described. Unlike
previous studies that artificially increased the number of mono-
clonal precursor T cells to >106 (2 orders-of-magnitude greater
than typical physiological conditions) in order to visualize them
in a small imaging volume17,18, we image physiologically realistic
(5 × 104 transferred) cell frequencies.
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Results
Learning illumination power as a function of shape. The
detected fluorescence intensity at a given point results from a
combination of two factors: (1) the sample-dependent physics of
light propagation (e.g., scattering potential of the tissue, fraction
of emitted photons that are detected, etc.), which are difficult to
model a priori due to heterogeneity in sample shapes. (2) The
fluorescent labeling (e.g., the type and local concentration of
fluorophores), a nuisance factor that makes it difficult to dis-
ambiguate weak fluorophores receiving a high dose of incident
power from strong fluorophores receiving a low dose.

Our method relies on the fact that, if fluorescence labeling of
distinct parts of the sample is, on average, constant (i.e., “standard
candles”), we can separate out the effects of fluorescence strength
and tissue-dependent physics by performing a one-time calibra-
tion to learn the effect of only the tissue-dependent physics for a
given tissue type. The calibrated model captures the effects of the
physics relating excitation power, detected fluorescence, local
sample curvature, and position in the XY field of view (FoV),
which includes optical vignetting effects. By generating a dataset
consisting of points with random distributions over these
variables, we can learn the parameters of a statistical model to
predict excitation power as a function of detected fluorescence,
sample shape, and position. On subsequent experiments in
different samples of the same type, the model can predict the
excitation power required to achieve a desired level of detected
fluorescence for each point in the sample based only on sample
shape and XY position.

The standard candle fluorophores are only necessary during
the calibration step. In the mouse lymph node, we introduce them
by transferring genetically identical, identically labeled (with
either cytosolic fluorescent protein or dye) lymphocytes, which
then migrate into lymph nodes and position themselves
throughout its volume. Although there are certainly stochastic
differences in labeling density between individual cells (e.g., noise
in expression of fluorescent proteins), the neural network
estimates the population mean, so as long as these differences
are not correlated with the cells’ spatial locations, they will not
bias the calibration.

An important consideration is what type of statistical model
will be used to predict excitation power. One possibility is a
purely physics-based model. We developed such a model using
principles of ray optics by computing the length each ray travels
through the sample and its probability of scattering before
reaching the focal point (Supplementary Fig. S4). When one must
predict excitation in real time, however, this model is too
computationally intensive (~1 s per focal point). To circumvent
the problem, the model parameters can be pre-computed, but this
requires the assumption of an unrealistic, simplified sample
shape, thus introducing a sample-dependent source of model
mismatch. On top of this, there may be additional sources of
model mismatch, such as a failure to account for wave-optical
effects, inhomogeneous illumination across the FoV, spatial
variation in attenuation of fluorescence signal, etc.

Given this model mismatch, we found that a physics-based
neural network was a better solution. Unlike the purely physics-
based model, a physics-based neural network is a flexible
function approximator that can be easily adapted to incorporate
additional relevant physical quantities into its predictions. For
example, accounting for variations in brightness across a single
FoV would require building optical vignetting effects into a
physical model, whereas a neural network can simply take
position in the FoV as an input and learn to compensate for
these effects. Importantly, a small neural network can make
predictions quickly (~1 ms per focal point) and is thus suitable
for real-time application.

The neural network makes its predictions based on measure-
ments of the sample shape that capture important parameters of
the physics of fluorescence attenuation. To measure these
parameters, points were hand selected on the sample surface in
XY images of a focal stack to generate a set of 3D points
representing the outer shape of the sample (Fig. 1b). These points
were interpolated in 3D in a piece-wise linear fashion to create a
3D mesh of the sample surface. In MPM, the distance light
traveling through tissue is an important quantity, as both the
fraction of excitation light that attenuates from scattering/
absorption and the fraction of fluorescence emission that absorbs
are proportional to the negative exponential of this distance1,
assuming homogeneous scattering. We thus reasoned that
measuring the full distribution of path lengths (i.e., every ray
within the objective’s numerical aperture—the same starting
point of the ray optics model) would provide an informative
parameterization to predict fluorescence attenuation. Empirically,
we found that the full distribution of distances was not needed to
achieve optimal predictive performance (based on error on a held
out set of validation data during neural network training), and
that measuring 12 distances along lines with a single angle of
inclination relative to the optical axis was sufficient (Fig. 1c, green
box). We encode the assumption that the optical system is
rotationally symmetric about the optical axis by binning the
measured distances into a histogram. The counts of this
histogram were used in the feature vector fed into the neural
network.

The neural network takes inputs of mean standard candle
brightness, local sample shape, and position within the XY FoV
and outputs a predicted excitation power (Fig. 1c, orange box).
The network is trained using a dataset with a single standard
candle cell that was imaged with a random, known amount of
excitation power. Neural networks are excellent interpolators and
poor extrapolators, so we ensured that the random excitation
power used in training induced a range of brightness spanning
too-dim-to-see to unnecessarily bright (Fig. 1c, top middle and
Supplementary Movie S2). Unlike contemporary deep neural
networks19, the prediction only requires a very small network
with a single hidden layer (a 104–106 reduction in number of
parameters compared to state-of-the-art deep networks). Once
trained, the network can then be used with new samples to
predict the point-wise excitation power needed for a given level of
brightness (Fig. 1c, bottom). In a shot noise-limited regime, the
signal-to-noise ratio (SNR) is proportional to

ffiffiffiffi
N

p
, where N is the

number of photons collected, while brightness is proportional to
N (assuming a detector with a linear response). Thus, this
brightness level can be interpreted at SNR2 for a constant level of
labeling density. After the one-time network training with
standard candles, experiments can be fluorescently labeled
without standard candles, and only the sample shape is needed
to predict excitation power.

Modulating excitation light across field of view. The appro-
priate excitation power often varied substantially across a single
220 × 220 μm FoV—visibly so when imaging curved edges of the
lymph node where the sample was highly inclined relative to the
optical axis, thereby including both superficial and deep areas of
the lymph node (Supplementary Fig. S1). The trained network
predicted very different excitation powers from one corner of the
FoV to another in such cases. In order to be able to deliver the
correct amount of power, we need to be able to spatially pattern
excitation light at different points within a single FoV as the
microscope scans through all points in 3D. To accomplish this,
we designed a time-realized spatial light modulator (TR-SLM)
capable of modulating excitation laser power over time as it raster
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scans a single FoV (Supplementary Figs. S1–S3). Unlike a typical
SLM, we leverage the point scanning nature of multiphoton
microscopy to achieve 2D spatial patterning by changing the
voltage of an electro-optic modulator (EOM) at a rate faster than
the raster scan rate in order to spatially pattern the strength of
excitation. 3D spatial patterning is achieved by applying different
2D patterns when focused to different depths. This method has
the advantage or avoiding reflection or transmission losses
associated with SLMs, thereby maintaining use of the full power
of the excitation laser. The TR-SLM was built using an Arduino-
like programmable micro-controller connected to a small op-amp
circuit that output a voltage to an EOM, allowing it to retrofit an
existing multiphoton microscope for less than $50.

Generalization across samples. To validate the performance of
LAMI and demonstrate that it can generalize across samples, we
trained the network on a single lymph node and tested on a new,
differently shaped lymph node (Fig. 2a). The test lymph node was
seeded with a variety of fluorescent labels and imaged ex vivo to

eliminate the possibility of motion artifacts associated with
intravital microscopy. The surface of the test lymph node was
mapped as described previously (Fig. 1b). Several different desired
brightness levels were tested to find one with appropriate signal.
For comparison, we imaged the test lymph node with a constant
excitation power, with an excitation power predicted by a ray
optics model, and with LAMI (Fig. 2b). Since a full ray optics
model was too computationally intensive to be computed at each
point in real time, we made the a priori assumption of a perfectly
spherical sample for our ray optics model comparison. With
constant excitation, fluorescence intensity rapidly decayed after
the first 25–50 μm. The ray optics model, which modulated illu-
mination based on both depth and curvature, provided visuali-
zation of a much larger area, but still exhibited visible
heterogeneity, including areas with little to no detectable fluor-
escence. This makes sense given that the lymph node was not
perfectly spherical, which the model had assumed. LAMI pro-
vided clear visualization of cells throughout the volume of the
lymph node (Fig. 2b and Supplementary Movie S3), up to the
depth limit imposed by the maximum power of the excitation
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laser on our system of around 300–350 μm (Fig. 2e). In inter-
preting these data, it is important to note that the images were
taken sequentially, so some movement of individual cells between
images is expected. Similar performance was maintained even on
lymph nodes with irregular, multi-lobed shapes (Supplementary
Movie S4).

Unlike a flat sample, where fluorescence attenuates with depth
following an exponential function1, a curved, convex sample such
as a lymph node has a sub-exponential decay with depth
(Supplementary Fig. S5). To better understand how the appro-
priate excitation power changes across the sample, we visualized
the predictions of the neural network across space (Fig. 2c). This
prediction can be used to make a quantitative comparison of
volumes of the sample to which appropriate excitation power can
be delivered with LAMI vs other common adaptive excitation
strategies in MPM (Supplementary Fig. S6).

In order to conduct LAMI experiments on in vivo samples, we
added two additional data processing steps: (1) correcting motion
artifacts, which are an inescapable feature of intravital imaging
(Supplementary Figs. S7 and S8 and Supplementary Movies S5
and S6) and (2) developing a pipeline for identifying and tracking
multiple cell populations across time (Supplementary Figs. S8 and
S9). The latter used an active machine learning20 framework to
amplify manual data labeling, which led to a 40× increase in the
efficiency of data labeling compared to labeling examples at
random (Supplementary Fig. S8).

In vivo lymph node imaging under physiological conditions.
Using our system, we conducted a biological investigation of a
common model system for response to vaccination, in vivo
imaging of a murine popliteal lymph node in an anesthetized
mouse. Subunit vaccines are a clinically used subset of vaccines in
which patients are injected with both a part of a pathogen (the
antigen/subunit) and an immunogenic molecule to elicit a pro-
tective immune response (the adjuvant). A common model sys-
tem for these consists of mice being immunized with Ovalbumin,
a protein in egg whites, as a model antigen and lipopolysaccharide
adjuvant. Before immunization, fluorescently labeled T cells that
specifically respond to Ovalbumin (monoclonal OT-I and OT-II
T cells) are also transferred to the host mouse so that their
antigen-specific behavior can be observed in relation to antigen-
presenting cells in the local lymph node where the initial immune
response occurs.

Typically, these experiments can only image a small volume of
the lymph node at once. In order to visualize a sufficient number
of antigen-specific T cells, previous studies transferred 2–3
orders-of-magnitude more monoclonal cells than would typically
exist under physiological conditions, a modification that is well
established to alter the dynamics and outcomes of immune
responses12–15. With our LAMI technique, we can deliver the
correct excitation power to 10–100× larger volume of tissue (the
exact number depends on what baseline, as described in
Supplementary Fig. S6, Methods), so the perturbation of
introducing a physiologically unrealistic number of cells is no
longer needed. We use an endogenous population of fluorescently
labeled antigen-presenting cells, type I conventional dendritic
cells labeled with Venus under the XCR1 promoter21.

Twenty-four hours after immunization with lipopolysacchar-
ide, the type I conventional dendritic cell network exhibited a
marked reorganization (Supplementary Fig. S10 and Supplemen-
tary Movies S7 and S8), with XCR1+ cells clustering closer to
each other and moving from a more even distribution throughout
various areas of the lymph node into primarily the paracortex.
We found that these clusters of dendritic cells were located
primarily around OT-I (CD8 T cells specific to Ovalbumin)

rather than OT-II (CD4 T cells specific to Ovalbumin) or
polyclonal T cells, and closer to high endothelial venules than in
the control condition.

Imaging and tracking dendritic cells in a control condition and
at 24 h after immunization revealed that this reorganization was
accompanied by a change in motility, with dendritic cells at the
24 h time point moving both more slowly and in a subdiffusive
manner, thus confining themselves to smaller areas (Supplemen-
tary Movie S9) compared to the more exploratory behavior of the
control condition (Fig. 3a). This decrease in average motility
appeared global with respect to anatomical subregions and the
local density of other dendritic cells (Supplementary Fig. S11).
These changes in dendritic cell motility were also accompanied by
changes in T cell motility in an antigen-specific manner. OT-I
T cells, which appeared at the center of dense clusters of dendritic
cells, showed the most confined motility compared to polyclonal
controls, while OT-II cells were often found on the edges of these
clusters with slightly higher motility (Fig. 3b and Supplementary
Movie S7).

To understand how this reorganization takes place, we
next imaged lymph nodes 5 h after immunization. Although
dendritic cell motility has not yet changed at this time point,
the increasing formation of clusters is detectable on the
timescale of an hour (Fig. 3c). Over time, new clusters appeared
to form both from spatially separated dendritic cells moving
toward one another, and from isolated dendritic cells moving
toward and joining larger existing clusters (Supplementary
Movies S10 and S11).

These findings reveal that there is a marked difference in the
location and behavior of dendritic cell networks encountered by
T cells that enter an inflamed lymph node at the beginning vs the
later stages of an immune response. Notably, they also show that
the larger-scale dendritic cell reorganization precedes the T cell
activation-induced motility arrest that we and others observe
amongst antigen-specific T cells at the 24-h time point.

We speculate that this increased local concentration of
dendritic cells may be necessary for rare, antigen-specific T cells
to find one another and form the homotypic clusters required for
robust immunological memory22. The reorganized environment
could be an important factor in the difference in differentiation
fate of T cells that enter lymph nodes early vs late in immune
responses23.

Discussion
We have demonstrated how a computational imaging MPM
approach, LAMI, provides a rigorous, data-driven approach for
adapting illumination to achieve sufficient signal-to-noise without
over-illuminating the sample. This removes an important source
of human bias, heuristic adjustment of illumination, and thereby
enables automated, reliable, and reproducible imaging experi-
ments. Significantly, it neither requires specialized sample pre-
paration nor additional calibration images that deplete the
sample’s photon budget. This technology enables imaging
experiments with more physiological conditions. In this work, we
demonstrate an example of lymph node imaging with 100× lower
T cell frequencies.

LAMI is most useful for highly scattering samples with non-flat
surfaces (e.g., lymph nodes, large organoids or embryos), which
have complicated functions mapping shape to excitation.
Applying LAMI to other tissues will require development of
sample-specific standard candles. There are many possibilities for
these—the only strict conditions are having a labeling density that
is not location specific and that individual standard candles can
be spatially resolved. Some possibilities for standard candles
include genetically encoded cytoplasmic fluorophores or
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organelles or fluorescent beads. Other samples will also require a
means of building a map of the sample surface. Though this work
uses second harmonic generation (SHG) signal at the sample
surface, reflected visible light might be better suited for this
purpose. This process could also be automated to improve
imaging speed.

Although scattering of excitation light is likely the largest factor
responsible for the drop in fluorescence with depth, absorption of
emission light may also play a role, especially when imaging
deeper into the sample. The fact that far-red fluorophores can be
seen at greater depths than those in the visible spectrum supports
this possibility (e.g., eFluor670 cells in Fig. 2b). Since the neural
network makes no distinction between a loss of fluorescence from
scattered excitation light and one from absorbed emission light, it
is possible that the network learns to compensate for some
combination of the two. Compensating for absorbed excitation
light would imply that fluorescence emission and photobleaching
increase at greater depths (which anecdotally seemed to be the
case). It is also possible that the sample does not have a spatially
uniform scattering potential, but that the neural network learns to
implicitly predict and compensate.

There are many areas in which LAMI could be improved. The
biggest issue in delivering the correct amount of power to each
point in intravital imaging of lymph nodes was the map of the
sample surface becoming outdated as the sample drifted over
time. To combat this, we employed both a drift correction algo-
rithm and periodically recreated the surface in between time
points based on the most recent imaging data. We note that our
system used a modified multiphoton system not explicitly
designed for this purpose, and building a system from scratch
with better hardware synchronization between scanning mirrors,
focus, and excitation power would increase temporal resolution
several fold and lessen the impact of temporal drift. Using state-
of-the art image denoising methods24 would also allow for faster
scanning.

The maximum depth of LAMI in our experiments was limited
by the maximum excitation laser power that could be delivered. A
more powerful excitation laser could push this limit deeper, or
using three-photon, rather than two-photon excitation. Another
improvement to depth could be made by coupling adaptive
illumination with AO. Incorporating AO could lessen the loss in
resolution with depth and potentially restore diffraction-limited
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Fig. 3 Immune response under physiological conditions. a Distinct changes in global behavior of antigen-presenting cells as measured by XCR1+ dendritic
cell motility 24 h after immunization show the cell behavioral correlates of developing immune responses. (Left) Tracks of motility in control and 24 h post
immunization, (right top) log histograms of motility coefficients, and (right bottom) displacement vs square root of time show that dendritic cells switch
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tracks of T cell motility. c Dendritic cell clustering can be visualized and quantified on the whole lymph node level. (Top) 3D view with colored bars marking
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resolution deep in the sample. Combining ideas form LAMI with
AO could be especially powerful. One limitation of AO in deep
tissue MPM is the need for feedback from fluorescent sources to
pre-compensate for scattering5,25,26, making the achieved cor-
rection dependent on the brightness and distribution of the
fluorescent source being imaged. We have demonstrated in this
work that it is possible to predict the appropriate excitation
amplitude from sample shape alone. We speculate that a similar
correction might be possible for the phase of excitation light,
since scattering is caused by inhomogeneities in refractive index,
and the largest change in refractive index seen by the excitation
wavefront is likely to be at the surface of the sample when it
passes from water into tissue. Deterministic corrections based on
the shape of the sample surface have indeed shown to improve
resolution in cleared tissue27, and the additional flexibility of a
neural network could provide room for further improvement.

In contrast to contemporary techniques based on deep
learning19, the neural network we employ is simple and shallow
(1 hidden layer with 200 hidden units). Adding layers did not
increase the performance of this network on a test set. We believe
this is a consequence of the relatively small training set sizes we
used (104–105 examples). Larger and more diverse training sets
and larger networks would likely improve performance and
potentially allow for additional output predictions such as
wavefront corrections.

In conclusion, LAMI is a powerful technique for adaptive
illumination in multiphoton imaging, with the potential for
opening a range of biological investigations. We were able to
implement it on an existing two-photon microscope using only
an Arduino-like programmable micro-controller and a small op-
amp circuit for less than $50. A tutorial on how to implement
LAMI using exclusively open-source hardware and software can
be found on Zenodo28.

Methods
Quantifying the increased volume imaged with LAMI. In order to understand
the increases in volume provided by LAMI, we must first consider the problem of
signal decay in MPM, the commonly used techniques for addressing this problems,
and the unique challenges that arise when applying these techniques to curved
samples.

Challenge 1: non-exponential decay profile. The literature reports that two-photon
fluorescence decays exponentially with depth at constant power, and thus requires
an exponential increase of power with constant depth in order to compensate and
achieve uniform signal1. A simple geometric argument demonstrates why this is
not true of curved samples. The exponential increase in attenuation is based upon
the assumption that the path lengths through the sample of excitation rays increase
linearly with depth. However, in a curved sample this is not the case. Specifically, in
the case of convex samples like lymph nodes, the distance traveled through the
sample by marginal rays increases sublinearly as a function of the distance focused
into the sample (Supplementary Fig. S5a, b). As a result, the required power to
compensate and achieve uniform fluorescence must be sub-exponential with depth
(Supplementary Fig. S5c).

Challenge 2: decay profile must be relative to top of sample. In multiphoton systems
where an arbitrary function (i.e., not just an exponential) can be set to increase
power with depth, the power increase profiles are usually a function of the
microscopes Z-axis. For a curved sample, this means that the power profile will not
be applied from the top of the sample itself. Thus, in order to properly apply a
decay profile, the microscope must incorporate some knowledge of the position of
the top sample and offset the decay profiles appropriately.

Challenge 3: functional form of decay profile changes across curved samples. Even
with the ability to apply arbitrary offsets depending on the location of the top of the
sample, the function mapping depth to fluorescence decay can change across the
sample depending on the local curvature being imaged through. To be able to
image a curved lymph node in full, one must know an ensemble of such profiles,
such that the appropriate one can be applied based on the local shape.

Estimating the increase in volume using LAMI. Before getting into the details of the
calculations, an important point must be clarified: For a given object in the sample,
there are a range of laser powers that might appear to be acceptable. That is,

anything above the threshold where it becomes visible and below the threshold at
which visible heat damage occurs. However, photobleaching and photodamage are
occurring well below the upper threshold where the sample can be clearly seen
burning. Thus, our criterion is not to end up anywhere in this range, but rather to
be at its very bottom: generating enough emission light for visualization and
analysis with the minimal possible excitation power.

Supplementary Fig. S6a shows a comparison of various potential strategies for
spatially modulating illumination in a popliteal lymph node, our calculations for
the volume that each would be able to image, and the parameter values used in
those calculations. The 3D volume of illumination power predictions made by
LAMI is used as the target value for excitation power at each point.

The top row shows the simplest strategy: constant illumination. With this
strategy, a small strip on the upper portion on the lymph node, where the required
power is approximately constant, can be made visible. This strip does not extend to
the lower portion because shadowing of half of the excitation light requires greater
power here. It is not possible to image larger areas deeper in the lymph node
without overexposing adjacent areas. We model this as a spherical shell with a 25
μm thickness. We multiply the resultant volume by a factor of 14 as a rough estimate
of the fraction of the hemispherical shell not affected by this shadowing.

Most multiphoton systems are equipped with an ability to modulate laser power
with depth. In many cases, this consists of setting a decay constant to modulate
power according to an exponential function. Flat samples often have such an
exponential profile with depth, but curved samples such as lymph nodes do not (as
shown theoretically in Supplementary Fig. S6). Based on the empirical fit in
Supplementary Fig. S6b, we conclude that such a strategy only works up to 140 μm
deep, and thus set the h parameter for this method equal to 140.

Many multiphoton systems are not limited to only an exponential increase, but
can increase power with depth according to an arbitrary, user-specified function. In
this case, the microscope can image up to the depth limit according to the
maximum laser power, which on our system is ~300 μm. Thus, we set the h
parameter for this method equal to 300.

In either case, a typical multiphoton system will do this modulation as a
function of the coordinate of the position of the Z-drive. Thus, these profiles only
remain valid for XY shifts over which the top of the sample has not changed
significantly in Z. The radius of this shift was used as the value of r in our in rows 2
and 4 of Supplementary Fig. S6a. To estimate it, we plotted a series of XZ profiles of
the ground truth excitation at different lateral shifts (Supplementary Fig. S6). These
profiles began at the Z coordinate of the top of sample, and did not shift as the top
of the sample changed (because MPMs without the ability to modulate power in
X, Y, and Z during a scan, as achieved without TR-SLM, cannot do this). The
corresponding line profiles stay constant for up to 250 μm when imaging the
central part of the lymph node, giving us an estimate of 125 μm for the r parameter.
This is a best case estimate, because the required profiles are only relatively
constant with Z in the central, flatter part of the lymph node. In other areas of the
lymph node (which researchers are often interested in imaging, since relevant
biology can be quite location specific in these structured organs), these profiles vary
much more quickly, staying constant for no more than 100 μm (giving r= 50).

Imaging volumes larger than the previous cases require the ability not just to
modulate power along the Z-axis, but also to (1) modulate power as a function of
X, Y, and Z, and (2) have a map of the top surface of the sample. The latter is
necessary so that the function for increasing laser power can be offset relative to the
surface of the sample, rather than being a function of the microscope Z-drive’s
global coordinate space. The former is necessary because the Z coordinate of the
surface of the sample can change substantially over a single FoV, so offsetting this
function within a single FoV requires the ability to apply different excitation
profiles in Z at different XY locations.

Using these two technologies in concert, the illumination system is no longer
limited by the shift of the sample surface relative to the Z coordinate of the
microscope. That is, the function for increasing power with depth can now be
applied with an arbitrary Z offset. In this regime, the lateral extent of what can be
imaged is now limited by the distance over which shifted versions of that function
remain valid. Closer to curved edges of the sample, the functions shape must
change to avoid over-illuminating the sample. To estimate this value, we plotted a
series of XZ profiles of the ground truth excitation at different lateral shifts, starting
from the top of the sample at the given lateral location (Supplementary Fig. S6d).
From these, we estimate a value of 500 μm, and thus set r equal to 250 in row 4 of
Supplementary Fig. S6a.

To realize the full potential of the multiphoton microscope, we must not only be
able to apply an arbitrary amount of excitation power in X, Y, and Z, but also have
a robust method for both learning the function mapping shape to power and
applying it in real time. The former is accomplished by the TR-SLM, and the latter
by LAMI. Using both of these together the full volume of the lymph node (up to
the excitation power limit) can be imaged, applying no more than the minimum
necessary power. We calculate this as a spherical shell with an outer radius of
510 μm and an inner radius given by the depth that can be imaged with the laser at
maximum power: (510 minus 300).

Microscope. All imaging was performed on a custom-built two-photon micro-
scope (with 20 × 1.05 NA water immersion objective) equipped with two Ti:sap-
phire lasers, one MaiTai (Spectra-Physics) and one Chameleon (Coherent). The
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former was tuned to 810 nm and the latter was tuned to 890 nm in order to provide
a good combination of incident power and excitation for the set of fluorophores
used. The microscope had six photomultiplier tube detectors in different bands
throughout the visible spectrum, giving six-channel images. All data were collected
using Micro-Magellan29 software to control the Prior Proscan II XY stage and two
Z drives, a ND72Z2LAQ PIFOC Objective Scanning System with a 2000 μm range,
which was used to translate the focus during data collection, and a custom built
stepper-motor based Z-drive, which was used to re-position the sample due to drift
in between successive time points. All Z-stacks were collected with 4 μm spacing
was used between successive planes.

Spatial light modulator. Because the appropriate excitation power varies as a
function of X, Y, and Z, we need to modulate laser intensity over all of three
dimensions. However, typical two-photon microscopes are equipped to only
modulate intensity over Z—by changing the laser intensity between different focal
planes. Thus, a custom TR-SLM was built to provide the ability to pattern illu-
mination across a single XY focal plane. By applying different 2D patterns at each
focal plane, the laser intensity could be modulated across X, Y, and Z. This TR-
SLM takes advantage of the scanning nature of MPM—that is, the final image is
built up pixel-by-pixel in a raster scanning pattern. This scanning pattern is
physically created inside of the microscope by the changing the angle of deflection
of two scanning mirrors. One of these mirrors operates in resonant scanning mode,
oscillating back and forth with sinusoidal dynamics to control X position within
the image. The second mirror is a galvanometer which operates with linear
dynamics to control the Y position within the image. Both mirrors are controlled
by a custom built controller box (Sutter Instruments), which outputs TTL signals
corresponding to completion of a single line and completion of a full frame (line-
sync and frame-sync, respectively).

The basic operation of the TR-SLM is to take these TTL signals as input,
determine where in the FoV is currently being scanned, and apply appropriate
modulation to the excitation laser based on a pre-loaded pattern. A circuit diagram
for the TR-SLM can be seen in Supplementary Fig. S3. The TR-SLM is built from a
Teensy 3.2 (a programmable micro-controller) using the Arduino IDE. It connects
to the controlling computer via USB, through which a low-resolution (8 × 8) XY
modulation pattern is pre-loaded via serial communication. The TR-SLM is also
connected to the mirror controller’s frame-sync and line-sync TTL signals. Each
time one of these signals is received, an interrupt fires, which initiates a
corresponding timer. In between interrupts, current scanning position in X and Y
is determined based on the elapsed time on these timers (using the appropriate
inverse cosine mapping for the resonant scanner). The laser modulation is then
determined for that point by bilinear interpolation of the low-resolution pattern.
This ensures the ability to apply a smooth gradient of excitation across the field
rather than a discretized one determined by the resolution of the supplied pattern.

The excitation laser’s amplitude is controlled by an EOM, which takes a logic-
level input of 0–1.2 V (where 0 V is off and 1.2 V is full power). The EOM’s input is
controlled by the Teensy’s onboard digital-to-analog converter (DAC) via a voltage
divider and voltage buffer circuit. The DAC output is put through a voltage divider
to lower the logic level from 3.3 to 1.2 V in order to utilize the full 12-bit analog
control, and the signal is then run through a LM6142 rail-to-rail operational
amplifier in a buffer configuration to isolate the DAC output from any downstream
current-draw effects.

To validate the performance of the TR-SLM, a uniform fluorescent plastic slide
was imaged with different patterns projected onto it (Supplementary Fig. S2).
Supplementary Fig. S2a shows a checkerboard pattern, which is not a realistic
pattern that would be projected into a lymph node, but demonstrates the resolution
capabilities of the TR-SLM. Along the vertical axis, the pattern can be precisely
specified on a pixel-by-pixel basis. However, the pattern is blurred along the
horizontal direction, resulting from the average of many images, each with a noisy
pattern along that dimension due to the resonant scanning mirror moving along
the horizontal axis faster than the vertical axis. The fundamental limitation is the
clock speed of the Teensy, which limits how fast the voltage to the EOM that
modulates the excitation laser can be updated. However, in practice, this noise is
not a problem because the excitation power needed is a smoothly varying function,
and thus a more realistic pattern for imaging into a sample is a gradient pattern
(Supplementary Fig. S2c).

Imaging experiment setup. The popliteal lymph node was surgically exposed in
an anesthetized mouse. Because of the geometry of our surgical setup, only one half
of the popliteal lymph node was visible (i.e., the axis running from top of cortex to
medulla was perpendicular to the optical axis). Although we were able to image this
half of the lymph node, to get a better view of the whole cortical side of the lymph
node, we had to cut the afferent lymphatic, so that the lymph node could be
reoriented with its cortex facing the objective lens. The efferent lymphatic and
blood vessels were left intact. We note that a better surgical technique might be able
to circumvent this limitation.

To start the experiment, the microscope was focused to a point on the top of the
lymph node cortex using minimal excitation power and the signal visible from
SHG. Micro-Magellan’s explore mode was then used to rapidly map the cortex of
the lymph node using a low excitation power, and interpolation points were
marked on collagen signal from the SHG image. This surface was used not only to

predict the modulated excitation power, but also to guide data acquisition. Using
Micro-Magellan’s distance from surface 3D acquisition mode, only data within the
strip of volume ranging from 10 μm above the lymph node cortex to 300 μm were
acquired, rather than the cuboidal volume bounding this volume. This avoided
wasting time imaging areas that were either not part of the lymph node, or so deep
within it that they are below the depth limit of two-photon microscopy. Over time
the volume being imaged tended to drift. This was partially compensated for by
using the drift correction algorithm described below. However, we limited the use
of this algorithm to drift in the Z direction where drift tended to be the most
extreme (presumably because of thermal effects or the swelling of the lymph node
itself). For XY drift, or for Z drift the algorithm did not correct, we periodically
paused acquisition and marked new interpolation points on the cortex of the
lymph node, in order to update both the physical area being imaged, and the
automated control of the excitation laser.

Image denoising. All data were denoised using spatiotemporal rank filtering29.
Two full scans of each FoV were collected at each focal plane before being fed into
a 3 × 3 spatial extent rank filter. Because of the computational load of performing
all the sorting operations associated with this filtering at runtime, a computer with
a AMD RYZEN 7 1800X 8-Core 3.6 GHz processor was used for data collection,
and the filtering operations were parallelized over all cores. In addition, the final
reverse-rank filtering step was done offline to save CPU cycles during acquisition.
Before processing data, an additional filtering step using a 2D Gaussian with a 2-
pixel sigma kernel was applied to each 2D slice to improve signal-to-noise on
downstream tasks. We note that while spatio-temporal rank filtering was designed
specifically for the task of cell detection applied here, there may be room for further
improvement of real-time denoising (and thus lower doses of excitation light)
strategies based on deep learning24.

Ray optics spherical excitation model. On the way to developing standard candle
calibration, we experimented with a simulation framework in which lymph nodes
were modeled as spheres with homogeneous scattering potential. This framework
had several disadvantages, as detailed below. However, it was useful as a starting
point for calculating the random excitation powers that were applied to generate
the standard candle training data (even though this may not have been absolutely
necessary for generating random excitation). It is also useful to understand why it
is difficult to accurately make a physics-based model of this problem, and why
machine learning is especially useful. The details of this model are described below.

For a single ray propagating through tissue the proportion of photons that
remain unscattered and the two-photon fluorescence intensity decay exponentially

with depth1: F ¼ P0e
�2z

ls , where F is the two-photon fluorescence excitation, z is the
distance of propagation, P0 is the incident power, ls is the "mean free path” for a
given tissue at a given wavelength, which measures the average distance between
scattering events.

We assume a beam with a Gaussian profile at the back focal plane of an
objective lens, which implies that the amplitude and intensity of the cross-sectional
profile of the focusing beam are also both Gaussian. We also assume the
contribution from photons that are multiply scattered back to the focal point is
negligible and that scattered light does not contribute to the two-photon excitation
at the focal point. Using a geometric optics model with these assumptions, the
attenuation of each ray propagating toward the focal point can be considered
separately. Thus, we can calculate the amount of fluorescence emission at the focal
point by numerically integrating over all rays in the numerical aperture of the
objective, with a known tissue geometry and scattering mean free path
(Supplementary Fig. S4a). Supplementary Fig. S4b shows the output of such a
simulation for a spherical lymph node of a given size. Relative excitation power is
that factor by which input power would need to be increased to yield the same
fluorescence as if there were no scattering. It is parameterized by the vertical
distance from the focal point to the lymph node surface, and the normal angle at
that surface.

This model suffers from three main drawbacks that preclude its usefulness for
predicting excitation in real time: model calibration, model mismatch, and speed.

First, in order to calibrate such a model, two difficult to measure physical
parameters of the microscope and the sample must be estimated: the complex field
of excitation light in the objective pupil plane and the scattering mean free path of
the sample. The model is sensitive to miscalibrations of the former, because
different angles travel through different lengths of tissue in the sample, so an
overfilling or underfilling of the objective back aperture can have a major influence
on the amount of light that reaches the focal point. Estimating this likely requires
some kind of PSF measurement along with a phase retrieval algorithm (though our
model instead used an estimate of a Gaussian profile with zero phase). The second
needs to be measured empirically, as such values are not comprehensively available
for different wavelengths and different tissue types in literature.

Second, even if the model can be calibrated, it will only work if the model
captures all the relevant physics of the problem. Thus, if wave-optical effects play
an important role here (which they might, with a coherent excitation source such
as laser), the model will fail to account for this. The model also assumes a
homogeneous scattering potential throughout the lymph node, which we do not
necessarily know to be true. In contrast, neural networks are a much more flexible
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class of models, with the ability to fit many different types of functions without
being hindered by model mismatch.

Third, and most importantly, such a model is very computationally costly. It
must integrate over the full 2D distribution of rays within the microscope’s
numerical aperture, calculating the propagation distance through the sample for
each one. Our implementation of this took ~1 s per focal point, and 64 such
calculations must be done for each field view, which is acquired in 60 ms. Such a
model would need to be sped up 1000× in order to be applied in real time. Because
of this, the implementation used to generate the data in our figure had to be pre-
computed, and thus could not know the actual shape of the sample, adding another
source of model mismatch and potentially explaining the suboptimal performance.
The neural network model, in contrast, could be evaluated in less than 1 ms, and
could thus be applied in real time without extensive computational optimization.

Standard candle calibration. The training data for standard calibration were
collected by imaging an inguinal lymph node ex vivo, which had previously been
seeded with 2 × 106 lymphocytes from a Ubiquitin-GFP mouse and 2 × 106 lym-
phocytes from a B6, which had been labeled in vitro with eFluor670 (e670). Each
population was used as a standard candle for one of the two excitation lasers on the
system, which had their wavelengths tuned to 810 and 890 nm. Two separate
images were recorded, one with each laser on. The lymph node was imaged by
tiling multiple Z-stacks in XY to cover the full 3D volume. Each Z-stack was
imaged with power determined using the output of the spherical model described
above, multiplied by a randomizing factor drawn from a uniform distribution
between 0.5 and 2. These randomly distributed brightness data were then fed into
the cell segmentation and identification pipeline described below. The mean
brightness was taken for all voxels within each segmented region as the brightness
of the standard candle. The standard candle’s spatial location was used to deter-
mine the EOM voltage applied at that point in space, its location in the XY FoV,
and a set of statistics to serve as effective descriptors of the physics of light scat-
tering and emission light absorption.

The physical parameters were computed by measuring 12 distances from the
focal point of the standard candle to the top of the interpolation marking the cortex
of the lymph node (Fig. 1 in main text). All 12 distances were measured along
directions that had the same angle of inclination to the optical axis (ϕ), with equally
spaced rotations about the optical axis. Taken in its raw form, each element of this
feature vector is associated with a specific absolute direction in the coordinate space
of the microscope. The microscope should be approximately rotationally
symmetric about its optical axis. We do not want the machine learning model to
have to learn this symmetry from data, because it would needlessly increase the
amount of training data needed. Thus, we explicitly build in this assumption by
binning all distances into a histogram. We use nonlinearly spaced bin edges for this
histogram, based on the intuition that scattering follows exponential dynamics with
propagation distance, so relative difference in short distances of propagation are
more significant than those same differences at long distances. The bin edges of this
histogram were calculated by taking 13 equally spaced points from zero to one, and
putting them through the transformation f(x)= (x1.5)(350 μm), where 350 μm is
the propagation distance beyond which we do not expect excitation light to yield
any fluorescence excitation.

Standard candle brightness, location in XY FoV, and the physical parameter
vector were concatenated into a single feature vector. Each of these feature vectors
corresponded to one standard candle cell and was associated with a scalar that
stored the voltage of the EOM used to image that standard candle. The total
number of these pairs was 4000 for the GFP standard candles and 14,000 for the
e670 standard candles. We standardized all feature vectors by subtracting their
element-wise mean and dividing by their element-wise standard deviation. We
then trained a fully connected neural network with one 200-unit hidden layer and a
single scalar output. The network was trained using the Adam optimizer, dropout
with probability 0.5 at training, and a batch size of 1000. Training was continued
until the loss on the validation set ceased to decrease.

The output of this network is the voltage on a particular EOM. Because the goal
of this network is to deliver the right amount of excitation power, as opposed to
voltage, we converted this voltage into an estimate of relative excitation power (in
arbitrary units) before feeding it into a squared error loss function. We measured
the function relating EOM voltage to incident power empirically by placing a laser
power meter at the focal plane of the objective lens and measuring the incident
power under several different voltages. We found this curve to be well
approximated by a sinusoid, so we fit the parameters of this sinusoid and used it
directly in the loss function.

We experimented with several different architectures before finding the one that
worked best with our data. Neither adding additional hidden layers, nor increasing
the width of the existing hidden layer beyond 200 improved performance. The best
performing value of ϕ (the angle of inclination to the optical axis) was 20°. Neither
other angles, nor using multiple angles improved performance on the validation
set. This was somewhat surprising, as we would have expected more information
about the local geometry to improve prediction. We suspect that this might be the
case with a larger training set.

Using standard candle calibration to control laser power. On later experiments,
we loaded the trained weights of the network, computed its output for 64 points in

an 8 × 8 grid for each XY image, and sent these values to the TR-SLM through
serial communication. The element of the vector corresponding to standard candle
brightness must be chosen manually, and can be thought of a z-score of the
distribution of brightness in the training set (since the training set was standardized
prior to training). For example, picking a value of 0 means the network will provide
the right laser power to achieve the mean brightness in the training set. Picking a
value of –1 means it will aim for a brightness 1 standard deviation below the mean
value of the training set.

To calculate the physical parameter feature vector, we computed the
interpolation of the lymph node surface as described previously. This interpolation
yields a function of the form z(x, y), where there is a single z coordinate for every
XY position (unless the XY position is outside the convex hull of the XY
coordinates of all points, in which case it is undefined). To avoid having to
repeatedly recalculate this function, it is evaluated automatically over a grid of XY
test points and cached in RAM by Micro-Magellan. In order to fill out the physical
parameter feature vector, we must calculate the distance from an XYZ location
inside the lymph node to its intersection with the interpolated surface. We measure
this distance numerically, using a binary search algorithm. This algorithm starts
with a value larger than any distance we expect to measure (i.e., 2000 μm), tests
whether the Z value for this XY position is above the surface interpolation or
undefined (which means it is outside the lymph node), halves the search space, and
repeats this test until the distance is within some tolerance (we used μm). These
calculations were all handled on a separate thread from acquisition so that they
could be pre-computed and not slow down acquisition. We note that our strategy
of sending each pattern out as a serial command certainly prevents the system from
running as fast as it might otherwise be able. Sending out many such patterns at
once and relying on a system that uses hardware TTL triggering should
dramatically increase the temporal resolution of this technique.

Validating standard candle calibrated excitation. To validate the use of standard
candle calibrated excitation, we transferred 2 × 106 GFP lymphocytes, 2 × 106 RFP
lymphocytes, and 2 × 106 e670 lymphocytes and imaged its mediastinal lymph
node ex vivo. We note that the mediastinal lymph node is quite different in size
and shape than an inguinal lymph node. The lymph node was imaged with con-
stant excitation, excitation predicted by the spherical ray optics model, and exci-
tation predicted by the standard candle neural network (Fig. 2). The transferred
lymphocytes included both T cells and B cells, meaning that there should be
fluorescently labeled cells throughout the volume of the lymph node.

Drift correction. Focus drift, primarily in the Z direction, was present in all
experiments at rates on the order of ~1 μm/min. This is unsurprising given the
massive influx of cells to lymph nodes during inflammatory reactions. It was
essential to compensate for this drift, because not doing so would lead to a mis-
match between the coordinates of our interpolation marking the lymph node
cortex and its actual location, which would in turn mean the automated excitation
would be misapplied. To compensate for this drift, we designed a drift compen-
sation algorithm that ran after each time point, and changed the Z-position of
secondary Z focus drive (i.e., not one used to step through Z-stacks) after each time
point. Estimates of drift were based on the SHG signal from the fibers in the lymph
node cortex, which were a convenient choice because their contrast was not
dependent on fluorescent labeling, and their spectral channel (violet) had relatively
little cross-talk with other fluorophores. At each time point after the second, the
cross-correlation of the 3D image in violet channel was taken with the corre-
sponding image from the previous time point. The maximum of this function was
taken within every 2D image corresponding to a single slice, and a cubic spline was
fit to these maxima. The argmax of the resulting smooth curve was used to estimate
the offset in Z between two successive time points with subpixel accuracy. This
estimate was used to update an exponential moving average that estimated the rate
of drift, so that both the existing drift from the previous time point could be
corrected, and the expected future drift could be pre-compensated for. In practice,
this algorithm worked well enough to stabilize the sample enough for the adaptive
illumination to be correctly applied. Remaining drift in the imaging data was
corrected computationally as described below.

Image registration. In order to conduct in vivo investigations, we must first
address motion artifacts, which are an inescapable feature of intravital imaging and
can compound when imaging large volumes over time. We thus develop a cor-
rection pipeline based on iterative optimization of maximum a posteriori (MAP)
estimates of translations for image registration and stitching (Supplementary
Figs. S7 and S8). These corrections enabled the recovery of stabilized timelapses in
which cell movements can be clearly visualized and tracked (Supplementary
Movies S5 and S6).

We identified three types of movement artifacts that occurred during intravital
imaging. (1) Due to the mouse’s breathing, there were periodic movements of
successive images relative to one another within each Z-stack. These movements
could be well approximated by motion within the XY plane, in part because of the
geometry of the imaging setup, and in part because of the heavily anisotropic
resolution of the imaging system, in which objects were blurred out along the Z-
axis much more so than X and Y. (2) Individual Z-stacks were misaligned with
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each other in X, Y, and Z. This seemed likely to be caused by physical movement of
the sample as a result of some combination of thermally induced focus drift and
biological changes leading to small tissue movements. (3) Global movements of the
entire sample over time. All three remained to some degree even after experimental
optimizations to improve the system stability and pre-heating the objective lens to
minimize thermal drift.

To correct these artifacts, we used a three-stage procedure with each step
corresponding to a type of movement artifact. Although cross-correlation is often
the first choice for rigid image registration problems in the literature, it was found
to be ineffective for solving two of the three of problems. Thus, we employed a
more general framework, using iterative optimization to compute MAP estimates.
This framework depends on the ability to transform and resample the image in a
differentiable manner. As shown in Supplementary Fig. S5a, we can set up a general
image registration problem that can be solved by numerical optimization by
creating a parametric model for how pixels move relative to one another,
resampling the raw image based on the current parameters of this model, and then
computing a loss function that describes how well the alignment based on this
transformation is. This paradigm enables us to solve general MAP estimation
problems of the following form with iterative optimization:

θ* ¼ argmin
θ

Lðf1ðθÞ; f2ðθÞ; :::Þ þ RðθÞ

Where θ are the parameters to optimize, fn is the transformation and
resampling of the nth subset of pixels, L the loss function, and R(θ) is a
regularization term for the parameters that allows incorporation of prior
knowledge. We used the deep learning library TensorFlow to set up these
optimization problems. This had the advantage of being able to automatically
calculate the derivatives needed for optimization using built-in automatic
differentiation capabilities. Often, these problems used extremely large amounts of
RAM, because all image pixels were stored in memory when performing
optimization. We were able to do this by using virtual machines on Google Cloud
Platform with extremely large amounts of memory (>1 TB). However, we note that
it would be possible to reduce the RAM requirements by downsampling the
images, or more carefully coding the optimization models to only use relevant parts
of the images rather than every pixel.

For the first correction, movements in XY for each Z-stack, each Z-stack was
optimized separately. We observed that XY movements were almost always
confined to a single z plane and that looking at an XZ or XY image of the stack,
these movements were clearly visible as discontinuities along the Z-axis. Thus, we
parameterized the model by a (number of Z-planes) × 2 vector, corresponding to
an XY shift for each plane. For this correction, all channels except for the channel
corresponding to SHG were used. The loss function was taken as the sum over all
pixel-wise mean-squared differences between consecutive z-planes, normalized by
the total squared intensity in the image (which was necessary to ensure that the
learning rate of the optimization did not need to be adjusted to accommodate the
total brightness of the Z-stack):

Lðx; yÞ ¼ ∑N�1
j¼0 ∑x0 ;y0 ðIðx0 þ xj; y

0 þ yj; zjÞ � Iðx0 þ xjþ1; y
0 þ yjþ1; zjþ1ÞÞ2

∑x0 ;y0 ;z0 Iðx0; y0; z0Þ2
;

where x and y are vectors holding the translations at each slice, j is the index of
the z plane, N is the total number of Z-planes, I(x, y, z) is a pixel in the raw Z-stack,
and x0 , y0 are the coordinates of pixels in the raw image. The regularization in this
problem was a quadratic penalty on the sizes of the translations (implicitly
encoding a prior that these translations should be normally distributed about 0)
multiplied by an empirically determined weighting factor:

Rðx; yÞ ¼ λðk xk22þ k yk22Þ
The value of lambda used was 8 × 10−3. The model was optimized using the

Adam optimizer and a learning rate of 1. Optimization proceeded until a the total
loss had failed to decrease for ten iterations.

The second correction, fixing movements over time, was computationally much
easier to solve, because the strong signal of the similarity between consecutive time
points in channels made registration not especially difficult if the correct channels
were used. For this reason, this correction did not require iterative optimization,
and could instead be solved with cross-correlation alone. The 3D cross-correlation
was taken between every consecutive two time points for each Z-stack. The location
of the maximum value of each of these cross-correlations gave the optimal 3D
translation between consecutive time points, and taking a cumulative sum of these
pairwise shifts gave an absolute shift for each stack over time.

The third correction, finding the optimal stitching alignment between each Z-
stack, was the most computationally challenging of these problems. This is because
it has a relatively small amount of signal (i.e., the overlapping areas of each Z-stack,
which was less than 10% of the total volume of each Z-stack). Furthermore, the
signal in these areas was relatively weak, because it was most susceptible to
photobleaching since it is exposed to excitation light multiple times at each point.
Furthermore, since stacks were often taken a few minutes apart, the content in
these overlapping regions often changed. Compensating for these difficulties not
only required using the iterative optimization framework with an appropriate loss
function that accounted for variations in image brightness and proper
regularization, but also carefully choosing which channels to use registration based

on the presence of non-motile fiducial signals. Most of the datasets we collected
had a channel with high endothelial venules, a large and immobile structure in the
lymph node, fluorescently labeled, and these channels were often the most useful
due to strong signal and lack of movement. We also found good performance by
including the SHG channel that provided signal from the collagen fibers in the
lymph node cortex. Finally, we noticed that autofluorescent cells were numerous
and immobile throughout the lymph node. Because autofluorescence has a broad
emission spectrum that appears across three to four channels at once, as opposed to
the labeled structures that appear over only one to two, we were able to isolate the
signal from these cells by taking the minimum pixel value over several channels.

As shown in Fig. S8, each Z-stack was parameterized by a three-element vector
that corresponded to its X, Y, and Z shifts. The loss function was taken as the mean
of all of the correlation coefficients of the pixels in the overlapping regions of every
pair of adjacent Z-stacks. Correlation coefficients are a better choice of loss for this
task than cross-correlation, because they better account for variations in image
brightness30. Optimization was performed using Newton’s method with a trust
region constraint. Rather than performing optimization on each time point
separately, all time points were averaged together and a single optimization was
performed taking all information into account. This was possible because relative
movements between stacks that differed by time point had already been corrected
by cross-correlations in step 2. Because of the strong signal afforded by averaging
multiple time points together, no regularization was needed.

Cell identification—feature engineering. We developed a machine learning
pipeline for tracking cell locations over time based on their fluorescent labels
(Supplementary Fig. S8). Automating this process was essential, as some datasets
contain thousands of labeled cells at 20 different time points. Our pipeline enabled
their detection across all datasets with the manual classification of no more than
500 cells for each time, a task that could be completed in a few hours of manual
effort. Briefly, this pipeline consisted of two stages: a 3D segmentation algorithm to
identify cell candidates, followed by a neural network that used hand-designed
features (Supplementary Fig. S9) to classify each candidate as positive or negative
for a given fluorescent tag. We used an active learning20 framework to efficiently
label training data for this classification network, which led to a 40× increase in the
efficiency of data labeling compared to labeling examples at random (Supple-
mentary Fig. S8).

Cells were detected in a two-stage pipeline that first utilized 3D segmentation to
identify cell candidates, followed by machine learning to classify which of those cell
candidates belonged to a population of interest. Candidate regions were generated
using the segmentation algorithm (Supplementary Fig. S8) built into Imaris 7.6.5
(i.e., the "surfaces” module), which includes a filtering step to smooth the data, a
local background subtraction step to account for variations in brightness, a
thresholding step to generate segmented regions, and a splitting step, in which seed
points of a certain size are generated, and segmented regions are split based on
these seed points. Candidates were generated for each population of interest (i.e.,
each fluorescent label) through the ImarisXT Matlab interface. Next, each
candidate region was "featurized” by computing a set of descriptive statistics about
the pixels enclosed within it. By default, Imaris outputs a set of 97 such statistics for
each candidate, including intensity means, standard deviations, minimums,
maximums, as well as a number of morphological features. However, these features
are specific neither to the biological nor technical context of the data, and we found
them to not be effective in all cases for training high-quality classifiers. Thus, we
engineered a set of additional features to better capture the variations that are
useful for classifying cells.

First, we reasoned that since all spectral channels are collected simultaneous in
two-photon microscopy, the ratios of intensity in different channels contain
important information. Treating each set of spectral statistics (e.g., intensity means
for different channels) as a six-dimensional vector (for a six-channel image), we
subtracted the background pixel value for each channel, and normalized to unit
length. This “spectral normalization” takes advantage of the fact that that intensity
measurements for a given fluorescent object are all proportional to the excitation
power delivered to the focal point, and thus it normalizes intensity statistics while
preserving their ratio. It also creates an additional feature from the magnitude of
the vector prior to normalization, which captures the brightness of the object
irrespective of it spectral characteristics.

We also designed several feature classes based on the observation that one of the
failure modes of the segmentation algorithm in the candidate generation step was
that it often created a single region around a cell of interest along with a second cell
in close contact to it that expressed a different fluorophore, but had spectral bleed-
through into the channel on which the segmentation was run. Thus, intensity-
weighted centers-of-mass (COMs) within each region would be expected to show
greater variance among the different spectral channels compared to a surface that
surrounds a structure single source of fluorescence intensity. This should hold true
even if the two objects surrounded by a single surface shared emission in the same
channels, as long as the spectral profile of the two objects differs. With this in mind,
we computed features for all pairwise distances between the intensity-weighted
COM for different channels, as well as the distance from each intensity-weighted
COM to the non-intensity-weighted COM. With the same reasoning, we also
added the correlation matrices containing the pairwise correlations between
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channels for all pixels within each candidate region as features (Supplementary
Fig. S5a).

Finally, to more directly address the issue of overlapping, spectrally dissimilar cells
(which are often the most biologically interesting case), we designed an algorithm to
identify subregions of pixels within each candidate region that has a spectrum that is
most similar to a reference spectrum (i.e., the spectrum of the fluorophore of the cell of
interest). This algorithm is based on the normalized cut segmentation algorithm31.
However, unlike that algorithm, which is designed for use on grayscale images, and
builds an adjacency matrix for all pixels based on a combination of their spatial and
intensity differences, our algorithm segments regions based on differences in their
spatial and spectral distances. This is accomplished by defining distances between each
pair of pixels as:di;j ¼ α k ri; rjk22 þ βbsTi bsj , where ri and rj are the spatial coordinates
of the two pixels,bsi andbsj are their unit norm intensity vectors across all channels, and
α and β are tuning parameters. Then, an adjacency matrix can be constructed by
defining the adjacency between pixel i and pixel j as wi;j ¼ e�di;j . The spectral
clustering method defined in32 can then be used to break all pixels into distinct
regions, and the normalized cut region of interest (NC-ROI) most similar to a given
reference intensity can be used for further downstream processing. Using this method,
a number of additional features were calculated for the pixels within each NC-ROI.

To validate that these features were in fact useful, we performed two types of
analyses. First, we looked at which types candidates cells the classifier repeatedly
failed to correctly classify. By running k-fold cross-validation on a ground truth set
of labeled candidates, we were able to identify which candidates the classifier failed
to correctly classify. Overlaying these results on principal component analysis plot
of the spectral variation among the cells of interest (RFP-labeled T cells), we found
that the misclassified cells were often spectral outliers as a result of spatial overlap
with some other fluorescent structure (Supplementary Fig. S6, left). However,
including the engineered features in this experiment dramatically reduced the
misclassification of these cells.

Next we ran a bootstrap analysis to identify the most useful features. We
performed regularization and variable selection via the elastic net procedure. Elastic
net is a useful method for identifying a sparse subset of useful predictors in a
dataset with correlated predictors.

For the dataset examined, the number of labeled T cells was significantly lower
than the number of non-T cells (T cells: 204, non-T cells: 38,575). In order to keep
a balanced training and test dataset, we partitioned the data so that the model
performs training and testing on similar sample distributions. In particular, we
performed 100 bootstrap resampling procedures from both T cell and non-T cell
data of approximately equal sample size. The model obtained was further tested on
a smaller test dataset with equal T cell and non-T cell ratio, set aside at the
beginning of the procedure.

For each bootstrapped sample set, we further ran 1000 iterations of randomly
picking test set/training set partitions. This step was performed in order to assess
the stability and overall distribution of the lambda parameter picked for each
model. Despite lambda being chosen through five-fold cross-validation procedure,
it is still specific to the prior decided training/test set partition. By performing
additional random partitions of the bootstrapped dataset, we can break this
dependence. In addition, we can also look at the distribution of cross-validation
error provided by the glmnet package, as well as the misclassification error from
the test set. The final model was fitted using the lambda parameter with the lowest
cross-validation and misclassification error for the bootstrapped sample set. We
looked at the averaged probabilities across all the samples, as well the total number
of times each predictor was chosen by the elastic net out of 100 bootstrap
subsamples.

The final results of this analysis can be seen in Supplementary Fig. S6d. Many of
the engineered features are among the strongest predictors, further validating their
usefulness for this task.

Cell identification—active learning. Having developed a useful set of task-specific
engineered features that can train high-quality classifiers with sufficient labeled
training data, the last remaining piece of the pipeline is a scheme for generating
labeled training data. Often, this can be the most time-consuming piece of
developing a machine learning system. To alleviate this bottleneck, we drew from
the field of active learning, a paradigm in which a classifier chooses which data
points receive labels, allowing them to learn more efficiently by seeing more
informative examples20. Specifically, we use the strategy of "uncertainty
sampling,"33 in which the classifier outputs a number between 0 and 1 for each
example (with 0 being complete certainty of one class and 1 being complete cer-
tainty of the other), and the example with a value closest to 0.5 is then selected and
sent to a human for labeling. This process is then repeated until enough training
data are labeled to train a classifier that generalizes well to the remaining
unlabeled data.

Applied specifically to the problem of classifying which candidate regions
corresponded to cells, the workflow was a follows: after computing the engineered
features for all candidate regions, we first labeled one example of a candidate that
belong to the population and one that did not. These labels were used to train the
classifier (a small, fully connected neural network with 12 hidden units). Because
classification accuracy usually increased by averaging the predictions of multiple
neural nets, three were trained in parallel and their predictions were averaged.
When making final predictions of cell populations, 100 neural nets were averaged.

The neural net was trained in Matlab, and the labeling interface for selecting cells
was built with Imaris for data visualization, and Matlab script on the backend that
communicated interactively with Imaris through the ImarisXT interface. We
periodically predicted the identities of all candidates, in order to identify
particularly difficult examples even faster and manually label them.

Although well justified from a theoretical standpoint as a means to make
exponential gains in data labeling efficiency on idealized problems34, there
remained the question of whether active learning had the same effect on this
problem. To answer this, we generated a ground truth set of labels by carefully
manually labeling every cell on a limited dataset of candidates for RFP-labeled
T cells. We reviewed each cell multiple times to be sure that its label was not a false
positive, and searched manually through the data volume to identify any false
negatives. Next, one positive and one negative candidate were randomly selected
and assigned labels. This labeled set was used to simulate the uncertainty sampling
procedure, drawing labels from the ground truth set rather than a human labeller.
The accuracy on the remaining unlabeled examples was used to assess
performance. As the plot in Supplementary Fig. S6d demonstrates, uncertainty
sampling vastly outperformed random sampling for this classification task.

Statistics and reproducibility. All data analysis was performed in using custom
scripts written using tools from the Scientific Python stack35. For all displacement
vs root time plots, curves were fit to the means of scatterplot data using locally
weighted scatterplot smoothing using locally linear regression36 using a tricubic or
Gaussian weighting functions. Sigma and alpha parameters were tuned manually
for each comparison to capture the major trends in the data while smoothing out
noise. Error bars represent 95% confidence intervals derived from bootstrap
resampling of data with 500 iterations. Cells were tracked over multiple time points
using the Brownian motion tracking algorithm in Imaris 7.6.5. In all cases the
number of tracks used for quantification overestimates the number of cells since
some cells move in and out of the frame or have breaks in their tracks where the
algorithm fails. The visualizations of individual tracks used random subsamples of
the total number of tracks for visual clarity. Details about sample sizes in individual
sub-figures follow:

Figure 2b: representative of two sets of visualized predictions on different lymph
node shapes, and consistent with uniform signal to noise seen across all LAMI
experiments.

Figure 2c, d: representative of five experiments on the same lymph node.
Consistent with results seen across all subsequent imaging data.

Figure 3a: imaging data were quantified for one dataset, which was
representative of three and two movies taken in two animals for control and 24 h
post immunization respectively. In all, 3015 and 514 tracked cells were used to
generate the quantification for control and 24 h post immunization respectively.
Tracks shorter than 5 min were excluded.

Figure 3b: imaging data were quantified for one dataset, which was
representative of three movies taken in two animals (two separate regions were
recorded in one animal). In all 1071, 44, and 10 tracked cells were used to generate
the quantification for polyclonal, OT1, and OT2 cells, respectively. Tracks shorter
than 3 min were excluded.

Figure 3c: imaging data were quantified for one dataset, which was
representative of five movies taken in three animals for 5 h post LPS condition, and
three movies taken in two animals for control condition. In all, 3483 and 5332
tracked cells were used to generate the quantification for control and 5 h
conditions, respectively. XCR1+ cluster density was computed by counting the
number of other XCR1 cells within 100 μm of each detected XCR1+ cell divided by
the total number of XCR1 cells detected at each time point. Tracks shorter than 5
min were excluded.

Supplementary Fig. S1: representative of >10 experiments.
Supplementary Fig. S10a,b: representative of five experiments. Supplementary

Fig. S10c: same as Fig. 3a. Supplementary Fig. S8c: bar plots represent proportions
and correspond to 697, 1161, 301, 600 (control) and 114, 800, 517, and 12 (24 h
post) cells In the subcapsular, deep paracortex, paracortex, and B cell regions,
respectively. Supplementary Fig. S10g, h: same as Fig. 3b. Supplementary Fig. S8i–l:
same as Fig. 3a.

Supplementary Fig. S11a: 861, 133, 649 (control) and 229, 53, 9 (24 h) were used
to generate each plot. Supplementary Fig. S9b–d: same as Fig. 3a.

Mouse strains. All mice were treated in accordance with the regulatory standards
of the National Institutes of Health and American Association of Laboratory
Animal Care and were approved by the UCSF Institution of Animal Care and Use
Committee (IACUC approval: AN170208). All mice were purchased for acute use
or maintained under specific pathogen-free conditions at the University of Cali-
fornia, San Francisco Animal Barrier Facility. Mice of either sex ranging in age
from 6 to 12 weeks were used for experimentation.

The following mice were purchased from the Jackson Laboratory or bred to a
C57BL/6 background: TCRa knock-out, LCMV P14-specific transgenic mice
(MMRRC stock no:37394-JAX), C57Bl/6J (stock no:000664), OT-1 (stock
no:003831), OT-2 (stock no:004194), transgenic mice interbred with CD2-RFP or
ubiquitin-GFP (stock no:004353), and XCR1-Venus mice.
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Mouse immune challenge. OTI and OT2 cells were isolated from lymph nodes of
mice. In addition, polyclonal (C57BL/6) or LCMV P14-specific CD8+ T-cells were
isolated as negative controls. Selection was carried out with a negative selection
EasySep mouse CD8+ or CD4+ isolation kit (STEMCELL Technologies, 19853
and 19852). If T cells did not have a transgenic reporter (CD2-RFP or ubiquitin-
GFP), they were fluorescently labeled with one of eFluor670 (Thermo Fisher Sci-
entific, 65-0840-85), Violet Proliferation Dye 450 (BD, 562158), or CMTMR
(Thermo Fisher Scientific, C2927). Dyes were diluted 1000-fold and incubated with
isolated cells for 10–15 min minutes in a 37 °C, 5% CO2 incubator. T cells were
injected retro-orbitally (r.o.) into Xcr1-Venus recipient mice in 50–100 μL volumes.
The number of OT1 and OT2 transferred was 5 × 104 except for experiments
conducted at 5 h post infection, where 5 × 104 cells were transferred in order to
visualize more T cell–dendritic cell interactions; for each experiment, equal
numbers of OT1 and OT2 cells were transferred. 1e6 control T-cells were trans-
ferred. Mice were given a 30 μL footpad injection containing 2.25 μg LPS (Sigma-
Aldrich, L6529-1MG) and 20 μg OVA protein (Sigma, A5503-1G) 1–4 days after
T-cell transfer; a 30 μL footpad injection of DPBS was used as a negative control to
the infection model. To visualize high endothelial venules, in some imaging
experiments, 15 μg Meca-79 Alexa Fluor 647 (Novus Biologicals, NB100-
77673AF647) or Alexa Fluor 488 (Novus Biologicals, NB100-77673AF488) was
transferred r.o. in a volume of 50 μL immediately before imaging.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper on FigShare37. The authors declare that all other
data supporting the findings of this study are available within the paper and its
supplementary information files.

Code availability
A streamlined Jupyter notebook that describes how to implement LAMI can be found on
Zenodo28.
All other code including data analysis code can be found on Zenodo38.
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