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SUMMARY
Cancersdisplay significantheterogeneitywith respect to tissueoforigin, drivermutations, andother featuresof
the surrounding tissue. It is likely that individual tumors engage commonpatterns of the immune system—here
‘‘archetypes’’—creating prototypical non-destructive tumor immune microenvironments (TMEs) and modu-
lating tumor-targeting. To discover the dominant immune system archetypes, the University of California,
San Francisco (UCSF) Immunoprofiler Initiative (IPI) processed 364 individual tumors across 12 cancer types
using standardized protocols. Computational clustering of flow cytometry and transcriptomic data obtained
from cell sub-compartments uncovered dominant patterns of immune composition across cancers. These ar-
chetypeswereprofound insofar as theyalsodifferentiated tumorsbaseduponunique immuneand tumorgene-
expression patterns. They also partitioned well-established classifications of tumor biology. The IPI resource
provides a template for understanding cancer immunity as a collection of dominant patterns of immune orga-
nization and provides a rational path forward to learn how to modulate these to improve therapy.
INTRODUCTION

Pathologists have long recognized that tumors are infiltrated by

cells of both the innate and adaptive arms of the immune system

and thereby mirror inflammatory conditions arising in non-
184 Cell 185, 184–203, January 6, 2022 ª 2021 Elsevier Inc.
neoplastic environments (Dvorak, 1986). Indeed, tumors are

complex environments where malignant cells interact with both

immune and nonimmune cells to form the complex cellular

network of the tumor microenvironment (TME) (Hanahan and

Weinberg, 2011). Cancer immunotherapy has revolutionized
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Figure 1. Generation and validation steps of T cells,myeloid cells, and stromal cells features fromsolid tumors using flowcytometry and bulk

RNA-seq

(A) Details of the Immunoprofiler initiative (IPI) cohort tumor samples collection, color-coded by anatomical region and annotated with case numbers of bulk-RNA

sequencing of viable cells sorted from fresh surgical tumor specimens and total number of samples with flow cytometry data.

(B) Description of the processing pipeline for digesting fresh tumor specimens into single cell suspension, submitting to multi-parametric flow cytometry for

immune phenotyping and cell sorting into six different cell population compartments (live [viable cells], Tcell [conventional T cells], Treg [T regulatory cells],

myeloid [myeloid cells], stroma [CD90+ CD44+ stromal cells], and tumor [tumor cells]).

(legend continued on next page)
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cancer care by acting directly on the TME and re-engaging the

anti-tumor immune response (Iwai et al., 2005; Leach et al.,

1996). However, the biology of the immune microenvironment

opposing these therapies is incompletely understood (Hugo

et al., 2016; Spranger, 2016), and many patients experienced

minimal or no clinical benefit from immunotherapies. A deeper

understanding of the diversity of the immune microenvironment

across human malignancies is critical to the improvement of

immunotherapy treatment strategies (Binnewies et al., 2018; Ga-

jewski et al., 2013; Gotwals et al., 2017; Hegde et al., 2016).

To date, the combination of The Cancer Genome Atlas (TCGA)

(Cancer Genome Atlas Network, 2015) and deconvolution tech-

nique base on gene expression from bulk tissue such as CIBER-

SORT (Aran et al., 2017; Chen et al., 2018; Newman et al., 2015)

have established a foundational but low resolution landscape of

the TME across human tumors (Bindea et al., 2013; Gentles

et al., 2015; Mlecnik et al., 2016; Rooney et al., 2015; Thorsson

et al., 2018). More recently, single-cell RNA sequencing

(scRNA-seq) technologies have been increasingly applied to

define the diversity of TME in a single cancer type (Azizi et al.,

2018; Goswami et al., 2020; Lavin et al., 2017; Zhang et al.,

2019) or focus on a single immune cell compartment (Cheng

et al., 2021; Gueguen et al., 2021; Oh et al., 2020; Zhang et al.,

2020; Zilionis et al., 2019). The identification of recurrent motifs

in the immune system at a higher resolution and spanning multi-

ple cancer types is still lacking.

It is now well understood that complex coordination of im-

mune cell states is required to achieve important tissue functions

such as wound healing, tissue homeostasis, or viral clearance

(Mujal and Krummel, 2019). Rather than focusing on the state

of a single cell type, a given immune response can be conceived

as a collection of cell subsets and specific immune cell pairings

linked with function allowing us to define ‘‘immune archetypes.’’

For response to therapy, a strong archetypal relationship be-

tween immune cell subsets such as cDC1, CD8 T cells, and nat-

ural killer (NK) cells (Barry et al., 2018; Böttcher et al., 2018) or

cDC2 and CD4 conventional and regulatory T cells (Binnewies

et al., 2019; Bosteels et al., 2020) has been previously identified

in specific tumor types and viral infection. Tumors have also

been described as ‘‘hot’’ (immune infiltrated) or ‘‘cold’’ (sparsely

infiltrated) with variations in stromal content (Bagaev et al., 2021).

However, these are likely incomplete delineations, and whether

they are associated with tumor biology and granular immune

cell composition is still unclear (Chen and Mellman, 2017).

In this study, we leveraged a unique dataset composed of both

cell type compositional and transcriptomic data from 364 fresh

surgical specimens across 12 tumor types to identify conserved

tumor immune archetypes. We used an unsupervised clustering

approach based on tumor specific immune gene signatures,

benchmarked against ‘‘ground truth’’ cell-type composition
(C) Box and whisker plots of flow score for T cells (n = 200), mononuclear phagocy

specimens measured by flow cytometry (see Table S2 for details by cancer type

(D) Left: gene score calculation method (see STARMethods). Right: correlation plo

tumor specimens, against their corresponding flow score (Figure S1; STAR Meth

(E) Cross-whisker plots comparing median Tcell, myeloid, and CD90+ CD44+ strom

according to the tumor types shown in (C), with the interquartile range on both a

See also Tables S1 and S2.
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data from flow cytometry, to identify and validate 12 unique tu-

mor immune archetypes that were also identified in the TCGA

dataset. These archetypes, discovered with only ten features,

differentially aggregated other cell types that were not part of

the discovery features, and delineated immune and tumor tran-

scriptomic programs across different tissue types. They and

these data thus provide an unprecedented resource to study

cancer immunity and cancer targets to improve response to

immunotherapy.

RESULTS

A pan-cancer high-dimensional study of dominant
immune composition
The UCSF Immunoprofiler Initiative (IPI) collected fresh surgical

specimens from 12 distinct tissues of origin using an unbiased

approach (i.e., agnostic of tumor type, stage, and grade) (Fig-

ure 1A; Table S1). We performed standardized processing of

364 individual tumor specimens including rapid digestion into

single-cell suspension for immune phenotyping using multi-

parametric flow cytometry (flow panels, see STAR Methods).

To identify patterns of gene expression within six broadly defined

cell populations, we also performed cell sorting for bulk RNA-seq

including compartments denoted: (1) ‘‘live’’: all viable cells at the

time of sorting; (2) ‘‘Tconv’’: sorted conventional CD4+ and CD8+

T cells; (3) ‘‘Treg’’: CD25
+ CD4+ (enriched for regulatory) T cells;

(4) ‘‘myeloid’’: lymphocyte-negative HLA-DR+ (enriched for

myeloid) cells; (5) ‘‘stromal’’: CD45� CD44+Thy1+ cells; and (6)

‘‘tumor’’: all other CD45� cells (Figures 1B and S1A, left; see

STAR Methods for full sort descriptions and potential caveats).

This approach was chosen over single-cell RNA-seq because

greater read depths capture weaker transcripts and because

this technology was an immature technology at the start of the

program.

Because they are the basis for many previous single-cancer

type studies, we initially focused upon the abundance of three

major cell types in the TME by flow cytometry (hereafter ‘‘3-

feature’’ or ‘‘3-f’’), namely total a/b T cells (T cell feature), myeloid

cells (myeloid feature), and non-immune CD45�, CD44+, and
Thy1+ stromal cells (CD44+ CD90+ stroma feature) (Figure S1A,

left; Table S2). Consistent with previous descriptions (Bagaev

et al., 2021; Mandal et al., 2016; Thorsson et al., 2018; Varn

et al., 2017), the cell abundances for these three cell types,

plotted as a score (Figure 1B; STAR Methods) for each tumor

type show tremendous heterogeneity across and within tumors

fromdifferent tissues, suggesting the need for a tumor classifica-

tion that goes beyond tissue of origin (Figure 1C).

Taking advantage of a distinguishing feature of our cohort that

has linked compositional flow cytometry and RNA-seq data, we

discovered and then validated a set of gene signatures that
tes (n = 159), and stromal cells (n = 121) based on population percent in tumor

).

ts of Tcell, myeloid, and CD90+ CD44+ stroma gene signature scores, for each

ods protocol) color-coded according to the tumor types shown in (C).

a gene signature scores by tumor type to the median flow score, color-coded

xes.
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would allow us to infer and compare compositional data from

external RNA-seq-only datasets such as TCGA. We used differ-

ential gene expression (DGE) analysis on high quality RNA-seq

data from sorted tumor-associated T cell, myeloid, and stromal

cells characterized by well-separated clusters of transcriptomic

profiles revealed by K-means clustering (Figure S1A, right). We

defined unique gene signatures for the T cell, myeloid, and

CD44+ CD90+ stroma features, comprised of 25, 29, and 21

genes, respectively, and used this to generate a compositional

score where a high value correspondedwith high cell abundancy

in the tumor specimen analyzed (Figures 1D andS1B). Use of this

score, when applied to RNA-seq data from the live RNA-seq

compartment in a validation cohort showed high concordance

with the cell type frequencies obtained via flow cytometry, inde-

pendent of tissue of origin (Spearman correlation 0.91, 0.90, and

0.94 of T cell, myeloid, and stromal, respectively) (Figure 1D).

Moreover, rank ordering of the tumor from different tissues by

these gene scores showed similar trends and strong correlations

across individuals to those obtained by flow cytometric mea-

surements (Figures 1C, 1E, and S1D).

Our signatures for intra-tumoral composition significantly out-

performed signatures derived from cell lines (e.g., CIBERSORT)

(Figure S1C) when compared to the ‘‘ground-truth’’ of flow cyto-

metric composition data. We presume this improvement results

from our data being taken from cells directly collected from fresh

tumor tissue as opposed to cell lines or isolated samples (Aran

et al., 2017; Newman et al., 2015). When we applied our gene

signatures to RNA-seq data from 4,341 TCGA tumor specimens

RNA-seq data, we found that the median score for each tumor

type between datasets for the majority of the tissues surveyed

was similar, suggesting that the abundancies we describe by tu-

mor type (Figure 1C) extend beyond our sample processing pro-

tocol (Figure S1E). The exceptions to this were for lung (LUNG),

liver (HEP), glioblastoma (GBM), and pancreatic (PDAC) tumors

(Figure S1E), and this may be due to incomplete or different

methods of sampling or patient-selection variation between the

cohorts; thus, in the remainder of this analysis, we did not

consider these cancer types when making additional

comparisons.

Unsupervised clustering of 3 features independent of
tissue of origin
We performed unsupervised clustering, using the Louvain com-

munity detection algorithm on a K nearest-neighbor (KNN)
Figure 2. Identification of coarse immune archetypes in solid tumors u

(A and E) UMAP display using KNN and Louvain clustering of tumor immune ar

patients in the IPI (A) and TCGA (E) cohorts. Each dot represents a single patien

(B and F) UMAP overlays of the Tcell, myeloid, and CD90+ CD44+ stroma feature

(C) Violin plots of Tcell, myeloid, and CD90+ CD44+ stroma features for each clu

(D) Table summarizing the six cluster/archetypes with descriptions based on the

(G and H) Representative Immunofluorescence of tumor specimens using CD45

quantification of immune cell frequency (H). (G) Scale bars, 100 uM.

(I and J) Box and whisker plot (I) and UMAP overlay (J) of immune cell frequency

(K and L) Box and whisker plot (K) and UMAP overlay (L) of a pan chemokine ph

(M) Heatmap and hierarchical clustering of median chemokine gene expression

(N) Top: bubble plot of median chemokine gene expression by cluster/archetyp

median Log TPM gene expression of each chemokine in the IPI (green) and TCGA

*1.00e�02 < p % 5.00e�02; **1.00e�03 < p % 1.00e�02; ***1.00e�04 < p % 1.
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weighted graph, on 3 features (T cell, myeloid, and CD90+

CD44+ stromal scores) for all 260 samples with a ‘‘live’’ bulk

RNA-seq compartment (Table S2). The clustering was visualized

using UMAP, both on the IPI and TCGA cohorts (Figures 2A and

2E; STAR Methods). The optimal clustering parameters were

evaluated by minimizing the Davies-Bouldin index (DBI) (Davies

and Bouldin, 1979), a metric that assesses the ratio of the

intra-cluster distance to inter-cluster distance (Figures S2A and

S2B; STAR Methods), and in both cohorts, this resulted in six

clusters. In the IPI cohort, this separated two immune rich clus-

ters (termed immune rich [IR] and immune stromal rich [IS])

defined by high expression of T cell and myeloid features and

differentiated by stromal enrichment in IS. This similarly differen-

tiated two immune desert (ID) clusters (ID and immune stromal

desert) defined by low expression of T cell and myeloid features

and again differentiated by enrichment of CD44+ CD90+ stroma

within the ID cluster. Finally, we also identified clusters with

enrichment in only one immune feature, namely the T cell centric

(TC) and myeloid centric (MC) features (Figures 2B–2D and S2C,

left). Application of our gene scores to the TCGA cohort also pro-

duced six clusters when minimizing the DBI, and these cluster

corresponded to the six clusters found in the IPI cohort (Figures

2E, 2F, S2C, and S2D).

To provide validation of the flow cytometry data, we ran immu-

nofluorescence assays on tissues collected from a subset of the

IPI tumor surgical specimens. Consistent with expectation, we

observed that samples taken from IR clusters (1–3) had the high-

est CD45+ infiltration, whereas ID samples had the lowest (Fig-

ures 2G, 2H, and S2G–S2L). Myeloid centric (MC) clusters

were similar to the ID clusters for overall CD45+ infiltration as as-

sessed by immunofluorescence (Figures 2G, 2H, and S2G–S2L).

However, MC clusters presented an intermediate CD45+ cells

frequency when measured by flow cytometry. Overall, we

observed significant correlation between the frequency of im-

mune cells among all cells versus among viable cells after tissue

dissociation (Figure S2F). The discrepancy between flow cytom-

etry and immunofluorescence observed in MC archetype may

represent a modest preferential recovery of immune cells during

tissue dissociation for MC tumors. Future analyses of spatial di-

mensions may reveal paired infiltration patterns (i.e., T cell plus

or minus myeloid or ‘‘excluded’’ versus ‘‘infiltrated’’) (Galon

et al., 2006; Mlecnik et al., 2016). This will involve considerable

orthogonal analyses due to the intrinsic complexity of diverse tis-

sue morphologies (e.g., lung versus colon).
sing Louvain clustering on two independent datasets

chetypes using T cell, myeloid, and CD90+ CD44+ stroma features to cluster

t.

s in the IPI (B) and TCGA (F) cohorts.

ster/archetype in IPI cohort.

level of the Tcell, myeloid, and CD90+ CD44+ stroma features.

(red) and DAPI (blue) staining for each cluster/archetype (G) and respective

using flow cytometry.

enotype gene signature score.

per cluster/archetype identified in IPI cohort.

e identified in the IPI (green) and TCGA (violet) cohorts. Bottom: bar plots of

(violet) cohorts. The colors used correspond to the archetypes presented in (D).

00e�03. See also Figure S2 and Tables S1, S2, S4, and S5.



Figure 3. Coarse immune archetypes are independent of tissue origin and associated to overall survival

(A) Left: UMAP display, and graph-based clustering of 3-feature tumor immune archetypes color-coded by tumor type. Right: stacked bar plot of the tumor type

distribution for 3-feature archetypes.

(B) Kaplan-Meier overall survival curves for each immune tumor archetype identified in the TCGA cohort.

(C) Left: pie charts representing distributions of each archetype by cancer type in the IPI (top) and TCGA (bottom) cohorts. Right: Kaplan-Meier overall survival

curve for each immune tumor archetype identified in the TCGA cohort for kidney renal clear cell carcinoma (KIRC), skin cutaneous melanoma (SKCM), sarcoma

(SARC), and colon adenocarcinoma (COAD).

(legend continued on next page)
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Given the importance of chemokines in recruitment of immune

cells, we sought to determine whether these archetypes had

unique chemokine gene-expression signatures that might

corroborate their classification. We first derived a single gene

signature score applied to the live compartment, based on 39

chemokines (Nagarsheth et al., 2017) and found a high score in

IR clusters and a low score in ID cluster in both the IPI and

TCGA cohorts (Figures 2K, 2L, and S2E). Two exceptions stood

out using the pan-chemokine measure: T cell and MC clusters

showed decreased and increased pan-chemokine scores,

respectively (Figures 2K and 2L). We thus examined chemokines

individually, using hierarchical clustering of the median chemo-

kine expression among the tumors of each archetype, and iden-

tified sets of chemokines associated with each cluster (Figures

2M and 2N). For instance, the three T cell-enriched clusters are

enriched in either chemokines expressed by T cell (XCL1,

XCL2, and CCL4) or T cell attracting chemokines (CXCL13 and

CCL5). Other archetypes had their own pattern of differentially

expressed chemokines, and these were broadly consistent

with their composition. ID clusters typically had a few unique

and specific chemokines expressed. The overall patterns

observed on a chemokine-by-chemokine basis for the six arche-

types was similar between IPI and TCGA (Figure 2N), with a few

exceptions such as CCL1, CCL11, and CCL27. These results

demonstrate that a 3-feature scoring of tumor tissue identifies

six unique clusters defined by a different degree of immune infil-

tration and expression of distinct sets of chemokines.

Distribution of 3-feature archetypes by cancer type and
outcome
3-feature-based clustering demonstrated a heterogenous distri-

bution of tumor types among the different clusters, although

some cancer types (e.g., kidney and melanoma) had significant

biases (Figures 3A and S3A). Taking advantage of the large clin-

ical dataset available in the TCGA cohort, we sought to broadly

assess whether these simple archetypal classifications had a

relationship to prognosis. Agnostic to the tissue of origin, the

overall survival at 5 years analyzed by multivariate regression is

significantly better for the IR archetype compared to all the

others (p value 3.9E�11) with a general trend in outcome that

tracks with overall immune infiltration (Figure 3B). To extend

this analysis and focus within tumor types, we analyzed distribu-

tions of archetypes in both IPI and TCGA and assessed the

outcome in individual cancer (Figures 3C and S3B–S3D).

Although the relative composition of archetypes by tissue of

origin was broadly similar in both cohorts, there was some vari-

ation (e.g., heavily ‘‘T cell centric’’ bias in melanoma in IPI cohort

can appear as a combination of IR or IS in TCGA). Furthermore,

archetypical classification in some tumor types (e.g., melanoma,

kidney, bladder, and colorectal) appear to stratify survival

outcome, and trends were weaker within other individual cancer

type. This variability prompted us to consider that these coarse-
(D) Box and whisker plot of CD4+ regulatory T cells frequency in tumor measured b

(E) Box and whisker plot of log2 CD4+ to CD8+ conventional T cell frequency ratio

archetypes.

*1.00e�02 < p % 5.00e�02; **1.00e�03 < p % 1.00e�02; ***1.00e�04 < p % 1.
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grained 3-feature archetypes may not capture the full range of

immune cell heterogeneity in tumors. Measurement by flow cy-

tometry of Treg density and CD4+/CD8+ conventional T cell ratio

confirmed our assumption because we observed variability

within each archetype (Figures 3D and 3E).

Developing a 6-feature archetype definition
Using flow cytometry data, we again grouped tumors by cancer

type to assess variation in regulatory T cells (Treg) in live cells and

CD4+ or CD8+ conventional T cell frequencies in T cells, both be-

tween and within tumor types (Figure 4A) (Table S3). Repeating

our previous methodology (Figure S1), we used DGE between

the Treg RNA-seq compartment and the other cell sorted

RNA-seq compartments to generate Treg gene signature

composed of 9 genes (Figure S4A) that was highly similar to

other published signatures (Arce Vargas et al., 2018; Plitas

et al., 2016; Zemmour et al., 2018). To isolate a signature for

CD8 versus CD4 within our Tconv RNA-seq compartment, we

used the flow data to identify samples rich in CD4 or CD8 con-

ventional T cells and performed DGE between them (Figure S4B;

STARMethods). Notably, most of the identified genes have been

previously associated with CD4+/CD8+ conventional T cell iden-

tity (e.g., CD8A and IL7R) or tissue residency (e.g., VCAM1 and

BACH2) (Richer et al., 2016; Savas et al., 2018) (Figure S4B).

Assessment of a validation cohort (samples that were not used

to generate the features scores) showed very high correlations

(Spearman correlation Treg:0.86, CD4:0.97, and CD8:0.98,

respectively), with population abundances measured by flow cy-

tometry. Again, these correlations were significantly better than

those obtained using CIBERSORT (Figure S4C). Unsupervised

clustering of all samples using the CD4 and CD8 feature signa-

ture genes within our Tconv RNA-seq revealed the existence of

at least 3 distinct groups of tumors across cancer type: CD8-

biased tumors, CD4-biased tumors, and a large population

that was mixed for both these signatures (Figure 4B).

Using these scores, we next performed 6-feature clustering

(Figures 4C and S4D–S4F). DBI optimization yielded eight clus-

ters, and analysis by alluvial plot revealed that the two new clus-

ters formed are mostly a subdivision of the previous coarse IR

and IS archetypes, now delineated by CD4 to CD8 ratio (Figures

4D, 4E, and S4E). This increase in feature granularity also re-

sulted in some specimens shifting within the classification. For

example, some T cell centric samples now shifted to being

considered ‘‘immune-rich:CD4’’ because of their profound high

CD4 score, Furthermore, this analysis revealed that the 3-feature

cluster of immune stromal desert was relatively CD8 rich

whereas the ID favored CD4 cells. CD45 densities remain high

for the IR tumors (Figure S4G). Assessing chemokine gene

expression showed that this re-clustering dramatically segre-

gated chemokine gene expression in the IR archetype and

further refined the chemokine expression found among the other

archetypes (Figures 4F and S4H).
y flow cytometry for each cluster/archetype identified in 3-feature archetypes.

in tumor measured by flow cytometry for each cluster/archetype in 3-feature

00e�03. See also Figure S3.
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Mapping T cell exhaustion and myeloid subset
heterogeneity in 6-feature archetypes
Exhaustion in T cells (Tex) represents a transcriptional state for

T cells that arises in cancers and chronic viral infections and is

characterized by progressive loss of effector functions, high

and sustained inhibitory receptor expression, and acquisition

of a distinct transcriptional program (Blank et al., 2019). We

used the Tconv RNA-seq compartment to identify genes that

showed the highest correlation with CTLA4, PDCD1, HAVCR2,

CD38, and LAG3, previously identified exhaustion markers. We

identified 11 such genes, which included TOX, a transcription

factor recently described as key driver of T cell exhaustion (Bel-

tra et al., 2020; Khan et al., 2019; Scott et al., 2019) (Figure S4I;

STAR Methods). We then benchmarked this gene signature

score against the abundance of CD4+, CD8+, and the sum of

both CD4+ and CD8+ T cells co-expressing CTLA4, PD-1, and

CD38 as markers of Tex (Figure S4J). This Tex gene score best

mirrored the flow-cytometry-based abundance of CTLA-4+/

PD-1+ cells within the combined CD8+ and CD4+ compartments

(Figure S4K). Using this Tex gene signature score, we observed

enrichment of exhaustion in CD8-biased archetypes including

the ID archetype (Figures S4L and S4M) and together with low

MHC I expression by the tumor cells in these archetypes

(Figure S4N).

In addition to T cell exhaustion, we also sought to assess

myeloid heterogeneity in our tumor landscape, widely known

to be variable in tissues. We thus probed the abundance of

mononuclear phagocytes (MNP) subsets including monocytes

(Mo), macrophages (Mp), classical dendritic cells (cDC2,

cDC1), and plasmacytoid dendritic cells (pDCs) for each arche-

type using flow cytometry (Figure S4O). This revealed that,

despite slight enrichment between archetypes (e.g., of cDC2

over cDC1 in IR CD4 bias), the cDC1/cDC2 ratio, monocyte,

and macrophage densities were highly variable within each of

the 6-feature archetypes (Figures 4G and S4P).

10-feature archetype definition
The complexity of the MNP identity and plasticity has compli-

cated efforts to determine which populations are beneficial or

subversive to the anti-tumor response (Broz et al., 2014; Etzerodt

et al., 2020; Gubin et al., 2018). To assess myeloid diversity and

density across all samples, we generated a scRNA-seq sub-

study of sorted tumor-associated MNP to identify specific

gene signatures for the principal MNP subsets (Figure S5A).
Figure 4. Inclusion of T cell subset features subdivide immune archety

(A) Box andwhisker plots of feature gene signature scores for CD4+ regulatory T ce

T cells (CD4 and CD8 features) out of the T cell compartment of patients in the IP

(B) Heatmap and hierarchical clustering of CD4 (yellow) and CD8 (blue) feature g

(C) Left: UMAP display and graph-based clustering of tumor immune archetypes

cluster patients in the IPI cohort. Each dot represents a single patient. Right: ta

abundance of the Tcell, myeloid, CD90+ CD44+ stroma, CD4, CD8, and Treg fea

(D) Box and whisker plot of log2 CD4+ to CD8+ conventional T cell feature gene sig

feature clustering.

(E) Alluvial plot depicting how cluster/archetype membership perpetuates or sub

(F) Heatmap and hierarchical clustering of the median chemokine gene expressi

(G) Box and whisker plot of log2 cDC2 to cDC1 ratio (top) and monocyte to macr

identified.

*1.00e�02 < p % 5.00e�02; **1.00e�03 < p % 1.00e�02; ***1.00e�04 < p % 1.
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Following removal of non-MNP cellular contaminants, we found

5 unique clusters from 3,880 input cells (Figure S5B). Using DGE

between each cluster, we identified unique 5 gene signatures for

each subset (Figure S5C). Most of the genes identified have been

previously associated with their respectiveMNP subsets such as

VCAN, TREM2, CD1C, CLEC9A, and LAMP5 in monocytes,

macrophages, cDC2, cDC1, and pDCs, respectively (Binnewies

et al., 2018; Cheng et al., 2021; Combes et al., 2017; Molgora

et al., 2020; Sancho et al., 2009). To validate these signatures

across individuals and tissue types, we performed a similar anal-

ysis on 11 fresh resected tumors across 3 tissue types (mela-

noma, head and neck, and kidney) (Figure S5D). We confirmed

that the same 5 gene signatures that we observed in our initial

melanoma sample uniquely identified theMNP subsets indepen-

dent of the tumor type (Figures S5D and S5E). A sixth cluster

characterized by high expression of FSCN1, CCR7, and

LAMP3 was also detected in this dataset (Figure S5E). This spe-

cific gene expression signature has been recently associated

with a distinct cDC transcriptomic/activation state (provisionally

named ‘‘cDC3’’) characterized by high expression of regulatory

molecules such as PD-L1 and highly correlated with Treg abun-

dance in the tumor (Cheng et al., 2021; Maier et al., 2020; Mulder

et al., 2021; Zhang et al., 2019). However, due to the absence of

specificmarkers in our antibody panel to validate the presence of

this subset by flow cytometry, we could not include this popula-

tion subset in our MNP features scores.

Gene signature scores for these MNP subsets were generated

in bulk RNA-seq for tumor-associated myeloid cells and vali-

dated against cellular abundance by flow cytometry. The corre-

lation of each MNP subset feature score across all cancer type

were highly correlated (Spearman correlation of 0.86, 0.91,

0.93, 0.94, and 0.94 for monocytes, macrophages, cDC2,

cDC1, and pDC, respectively) (Figure S5F; STAR Methods).

Again, when we analyzed the distributions of these five MNP

subset features scores by cancer type, a high heterogeneity

was apparent (Figures 5A and S5G).

Thus, we repeated the unsupervised clustering after adding

four MNP subset features including macrophages, monocytes,

and the two types of classical dendritic cells to the previous

six features (Table S3). The resulting clustering (hereafter

‘‘10-feature’’ or ‘‘10-f’’) produced 12 unique tumor immune ar-

chetypes after DBI minimization, with no bias toward specific ar-

chetypes found between scores calculated from flow and scores

calculated directly from RNA-seq (Figures 5A and S5H–S5J). As
pes by CD4 to CD8 ratio

lls (Treg feature) out of the live compartment, and CD4+ andCD8+ conventional

I cohort.

enes’ normalized expression, for patients in the T cell compartment.

using T cell, myeloid, CD90+ CD44+ stroma, CD4, CD8, and Treg features to

ble summarizing the eight cluster/archetypes with descriptions based on the

tures.

nature score ratio in tumor for each of the clusters/archetypes identified with 6-

divides from 3- to 6-feature clustering.

on for each cluster/archetype identified in the 6-feature clustering.

ophage ratio (bottom) measured by flow cytometry for each cluster/archetype

00e�03; ****p % 1.00e�04. See also Figure S4 and Tables S4 and S5.
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previously observed when adding T cell subsets, the addition of

the four MNP measures subdivided preexisting immune arche-

types but did not increase those by 16-fold as could occur if

these were randomly assorted (Figures 5B and 5C). MNP inclu-

sion also resulted in some specimens shifting between MC and

ID archetypes, driven by strong monocyte or macrophage

enrichment.

Analyzing the 12 archetypes produced in 10-f clustering, we

found that generally both IR and ID sub-archetypes were distin-

guished by distinct pairings of T cell andmyeloid subsets but that

these pairings varied. Specifically, the monocyte/macrophage

ratio demarcates two different IR CD8 bias archetypes where

Treg abundance is generally higher in macrophage-enriched tu-

mor specimen (Figures 5D–5F and 5O–5Q). One archetype, IR

CD4 biased, is differentiated from its IR CD8 counterparts by

enrichment in cDC2 versus cDC1 (Figures 5D and 5R–5T). How-

ever, such correlation between CD4/CD8 and cDC2/cDC1 ratios

is only observed among IR archetypes and not in archetypes

containing high stromal densities (Figures 5G–5I and 5R–5T).

The relationship between monocytes/macrophages and T cell

subsets composition also differed significantly among the 12 ar-

chetypes (Figures 5D-5N). In IS (Figure 5H), CD8 abundance is

opposed to macrophage abundance, but in ID, both CD4- and

CD8-rich sub-archetypes are equivalently enriched in macro-

phages and monocytes (Figures 5N, 5P, and 5T). TC (T cell

centric) archetypes are characterized by a positive correlation

between Treg and macrophage abundance (Figures 5J–5L and

5P–5Q). This discordance between the abundances of macro-

phages and other immune cells in different archetypes could

suggest that a generalized macrophage score does not capture

critical heterogeneity in macrophage phenotypes or that macro-

phages and T cells may engage in additional as-yet-undiscov-

ered relationships that regulate their numbers.

Defining immune gene expression pattern across 10-
feature archetypes
Focusing on the 12 tumor archetypes identified by 10-f clus-

tering, we examined associations with cell abundances and

gene sets that were not used for clustering. Significant arche-

type-specific enrichment was found for gene sets that define

intra-tumor NK cells in IR based on published signatures (Barry

et al., 2018) and these were confirmed by flow cytometry mea-

surement, while ISR were enriched in gene sets defining Mast

cells (Cheng et al., 2021) (Figures 6A, S6B, and S6C). Plasma

cells, defined by enrichments of IgG genes, were enriched in

T cell centric Macrophage bias tumors whereas B cell measured
Figure 5. Single-cell RNA-seq-derived myeloid signatures refine immu

(A) Left: box and whisker plots for the macrophages, monocytes, cDC1, and cDC

UMAP display and graph-based clustering of tumor immune archetypes using Tce

cDC1, and cDC2 features to cluster patients in the IPI cohort.

(B) Alluvial plot depicting how cluster/archetype membership perpetuates or sub

(C) Left: schematic of a ‘‘phylogeny’’ of the cluster/archetypes as they progresse

(D–N) Scatterplots of different features defining the twelve clusters/archetypes id

(O and R) UMAP overlay of macrophages (macs) and monocytes (mono) (O) and

cluster/archetype identified by 10-feature clustering.

(P, Q, S, and T) Box and whisker plot of Ln mono to macs ratio (P), Treg feature gen

ratio (T) for each cluster/archetype identified.

*1.00e�02 < p % 5.00e�02; **1.00e�03 < p % 1.00e�02; ***1.00e�04 < p % 1.
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by proteomic and transcriptomic expression (MS4A1; CD20)

were most prevalent in T cell centric DC rich (Chen et al., 2020;

van Galen et al., 2019) (Figures 6A and S6D). These may corre-

spond to a prevalence for tertiary lymph nodes in those arche-

types although we did not observe higher DC frequencies in

those tumor specimens (Figure S5J). An archetype-specific im-

mune composition pattern again correlated with specific enrich-

ment of groups of chemokine transcripts (Figure 6B). Notably,

chemokines with specificity for families of chemokine receptors

now frequently co-clustered within the 10-f archetypes.

We next used the myeloid RNA-seq compartment to explore

the level of expression of genes previously associated with tu-

mor-infiltratingMNP, namely ‘‘M1,’’ ‘‘M2,’’ ‘‘DC,’’ and ‘‘co-stimu-

latory molecules’’ (Biswas et al., 2013; Cassetta et al., 2019;

Cheng et al., 2021; Maier et al., 2020; Roberts et al., 2016).

Despite the heterogeneity in individual gene expression associ-

ated with M1 and M2 macrophage phenotypes among arche-

types, we observed a general enrichment in M2 genes in IS

archetypes (Figure 6C). On the other hand, DC- and co-stim-

associated genes were highly expressed in the T cell centric

DC rich archetype but LAMP3, FCSN1, and CCR7 expression

(typically indicative of the cDC3state) did not appear coordinated

across archetypes (Figure 6C). This may indicate heterogeneity

of dendritic cell transcriptomic states between archetypes.

To further elucidate the heterogeneity found in myeloid func-

tion, we combined the myeloid ‘‘signature’’ gene sets with a se-

lection of 12 other gene sets highly linked to subsets of Treg,

Tconv, B cell, plasma cells, and NK cells and performed hierarchi-

cal clustering of these genes sets based on their median expres-

sion in the archetypes. The gene sets were evaluated in different

RNA-seq compartments corresponding to their appropriate cell

type, namely ‘‘Th1’’ genes in the Tconv RNA-seq compartment,

M1 genes in the myeloid RNA-seq compartment, and ‘‘Treg

homing’’ in the Treg RNA-seq compartment (Figure 6D; Table

S3). Combining the gene sets in this way revealed distinct im-

mune signatures for each archetype (Figure 6D). For instance,

although the IR CD8 macrophage bias archetype was enriched

in genes associated with the type 1 response (interferon gamma

[IFNG], tumor necrosis factor [TNF], interleukin [IL]-1B) both in

Tconv and MNP compartments, both IS and ID CD8 archetypes

were characterized by their unique combination of upregulated

gene expression associated with T cell exhaustion (PDCD1,

CTLA4, and ENTPD1) together with M2-like macrophages

(PDCD1L2, CD163, CD274, and MRC1). This analysis also iden-

tified putative gene expression interactions present in the same

archetype across cell types, such as high CCR2 expression by
ne archetypes

2 features, calculated in the myeloid compartment, from the IPI cohort. Right:

ll, myeloid, CD90+ CD44+ stroma, Treg, CD4, CD8, macrophages, monocytes,

divides from 6- to 10-feature clustering.

d from 3-feature to 6-feature to 10-feature clustering.

entified in the IPI cohort.

classical dendritic cell type 1 (cDC1) and 2 (cDC2) feature scores (R) for each

e score (Q), Ln cDC2 to cDC1 ratio (S), and Ln CD4 to CD8 conventional T cells

00e�03; ****p % 1.00e�04. See also Figure S5 and Tables S3 and S4.



Figure 6. Each tumor archetype is defined by a unique combination of immune gene expression pattern

(A) Bubble plot of natural killer (NK) cells, B cells, plasma cells, and mast cells associated gene expression in the live compartment grouped by clusters/ar-

chetypes identified in the IPI cohort using 10-feature clustering.

(B) Heatmap and hierarchical clustering of the median chemokine gene expression of all chemokines in the chemokine phenotype signature, grouped by cluster/

archetype.

(C) Bubble plot of gene expression in macrophages (M1 and M2) and dendritic cells (co-stim and DC) function in the myeloid compartment, grouped by cluster/

archetypes in the IPI cohort.

(legend continued on next page)
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Tregs in an archetype rich in monocytes, which are known pro-

ducers of the CCR2 ligand, CCL2 (Loyher et al., 2018; Mondini

et al., 2019) (Figure 6D). Taken together, this demonstrated

that the 12 tumor immune archetypes found in 10-f analysis

also identify a unique combination of cell composition and tran-

scriptomic profiles.

Notably, certain immune populations remained more variable

across the archetypes. For instance, neutrophils weremostly un-

correlated although there was a slight and statistically insignifi-

cant rise in neutrophil infiltration in archetypes with low immune

infiltration (Figures S6A and S6E). A gene signature previously

associated with stimulatory dendritic cells abundance and better

outcome in melanoma patients is slightly enriched in archetypes

with high total immune infiltration (Barry et al., 2018). Exhaustion

signature is enriched in both IR and ID archetypes (Figures S6A,

S6F, and S6G). Thus, although the 12 immune archetypes from

10-f analysis identify dominant combinations of cell types and

transcriptomic profiles present in tumors, other cell types may

also be independently layered within and across this apparently

conserved biology.

10-feature tumor archetypes tie closely to tumor biology
and disease outcome
Finally,wesought toexamine the relationshipof10-f archetypes to

the phenotype of the tumor cells themselves. As previously shown

for the coarse archetypes, 10-f archetypes are diverse in their tis-

sue of origin; however, some tumor types remain highly repre-

sented within an archetype (e.g., kidney, immune rich CD8; mela-

noma,Tcell centric archetypes) (Figures7AandS7).Regardlessof

the frequent intra-cancer heterogeneity, we observed a strong

relationship between tumor proliferative capacity, measured by

the fraction of tumor cells that were Ki67+ as measured by flow,

and ID and myeloid centric archetypes (Figure 7B).

Based on this, we assembled gene signatures for various as-

pects of tumor biology to determine whether immune features

mapped to tumor biology. Expression of cell-cycle-associated

genes indicatedenhanced tumorcell proliferativecapacity in IDar-

chetypes, consistentwith theKi67data (Figure7C).Conversely, IR

and ISR tumors were enriched in other transcriptomic programs

such as interferon-stimulated genes (ISG), senescence, or epithe-

lial-mesenchymal transition (EMT)-related genes (Kinker et al.,

2020; Muñoz et al., 2019; Wiley et al., 2017), and only some IDs

were highly enriched in fibrosis-associated genes (Figure 7C).

Without pre-selection of genes from previous literature, we

performed DGE and then hierarchical clustering using the most

differentially expressed genes between archetypes on the sorted

tumor RNA-seq compartment (Figure 7D). Within the 12 sets of

differential genes, we noted some discernable patterns, for

example increased IFNG expression in tumor cells from the IR

CD8 macrophage archetype, concordant with increased type 1

response in immune cells from the same archetype.

To define gene signatures that we could assess in TCGA, we

queried our sorted live compartment to find genes that corre-
(D) Heatmap and hierarchical clustering of the median gene expression of B cells

plasma cells (all viable RNA-seq compartment), T cells phenotypes (Tconv RNA

dendritic cells function (myeloid RNA-seq compartment) grouped by cluster/arch

See also Figure S6 and Tables S5 and S6.
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lated with each archetype (Figure 7E). This identified unique

gene signatures for each of the 12 archetypes, within which we

observed both immune-related genes (e.g., LAYN, CTLA4,

CSF1, and CCL19) and non-immune-related genes (e.g.,

CRHBP, PTGFR, HSPA2, and MTCL1). Applying these signa-

tures to the TCGA dataset, we found that the tumor archetypes

identified in our IPI dataset were retrieved with a similar relative

composition of archetypes by cancer type in KIRC, CRC,

LUAD, HNSC, BLCA, or with a slight shift between archetypes

from the same coarse archetype (i.e., ID CD4 bias to IR CD8

bias) in GYN and SKCM (Figures S7A–S7K). Additionally, we

observed a similar distribution of archetypes in both cohorts

when looking at clinical correlates such as tumor stage, grade,

and metastatic status (Figures S7L–S7N). This suggests that

our archetypes can be identified in independent datasets and

in the predictive potential of these signatures for rapid classifica-

tion of patients in both primary and metastatic tumors indepen-

dent of tumor grade and stage.

Finally, survival analysis of the different tumor archetypes

identified in the TCGA dataset for each cancer type separately

showed that better outcomes may be cancer-type-specific,

and each cancer typemay have a different type of TME promot-

ing the best immune response (Figures S7A–S7K). However,

when survival analysis was performed across tumors using a

multivariate survival regression, we detected significant

outcome differences between archetypes that have similar

T cell subset enrichment regardless of the tissue of origin (Fig-

ure 7F). For instance, in IR CD8 archetypes, the apparent

enrichment in monocytes over macrophages (pink archetype

versus red) is associated with better survival (median survival,

3,354 days) and more so when compared to ID and IS CD8

biased archetypes (p value 1.55E�12) (Figure 7F, top).

Conversely, in archetypes with no significant bias between

CD4 and CD8 T cells, TC archetypes characterized by an

enrichment of macrophages over monocytes displayed the

higher median survival (2,456 days, p value 1.17E�6), whereas

in archetypes with CD4 T cell bias, no significant outcome dif-

ference between archetypes was detected regardless of

myeloid biases (p value 3.01E�1) (Figure 7F, middle and bot-

tom). This indicates that tumor archetypes provide a template

to study different subtypes of anti-tumor immune response in

a variety of primary human cancers. Finally, our study repre-

sents an initial framework—one certain to be refined—to under-

stand how tumor archetypes relate to other biological contexts

(Table S6) and how to best modulate these archetypes depend-

ing on their specific immune context.

DISCUSSION

In this study, we present a holistic survey of dominant immune

archetypes across 12 cancers from different tissues using fresh

surgical tumor specimens from 364 patients. Empowered by

complementary profiling assays, we were able to discover 12
(all viable RNA-seq compartment), NK cells (all viable RNA-seq compartment),

-seq compartment), T regs (Treg RNA-seq compartment), macrophages, and

etype in IPI cohort.
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distinct immune archetypes that span cancer types. Each arche-

type is made up of a unique combination of cell composition—

some used to derive the cluster, but many that are learned

from it—and immune and tumoral transcriptomic phenotypes.

Starting with just 10 independent cell compositional features,

unsupervised clustering revealed only 12 distinct clusters

whereas 10 independently assorting binary variables might

have produced 210 or 4,096. Although more work will need to

be done to ensure that this is not due to a lack of sampling,

this implies that some combinations of cell densities may not

exist in the TME of solid tumors. This is partly in line with previous

work that identified between four and six immune subtypes

spanning multiple tumor types in TCGA using mainly immune

cell fractions from deconvolution analysis of all tissue bulk

RNA-seq data and knowledge-based immune gene expression

signatures (Bagaev et al., 2021; Thorsson et al., 2018). Notably,

similar dominant immune pathways are also revealed in our anal-

ysis such as the IFN pathway or the imbalance between T cell

and MNP subsets. However, these similarities go beyond im-

mune-related features. We also identified stromal frequency as

a key distinctive feature in the tumor classification across tissues

that subdivide both IR and ID archetypes. Additional features

may partly explain our higher number of archetypes but it may

also lie in the power of a dataset that has large numbers of mem-

bers and spans a diverse spectrum of cancers. Nevertheless, our

progressive analysis from three coarse features through more

granular definitions of T cells and MNP subsets suggest that it

is the intersection of these 10 features that seem to arrive at a

stable view of themajor archetypes. However, further refinement

and discovery is required, especially in IDs where the paucity of

overall immune cells likely decreases our ability to resolve differ-

ences using only these 10 measurements.

As previously shown by others, in a single cancer type or in tu-

mor mousemodels, the TME can be coarsely categorized into IR

and ID areas (Bagaev et al., 2021; Duan et al., 2020; Galon and

Bruni, 2019; Mariathasan et al., 2018). Our analysis revealed

that the tumor immune archetypes subdivide this broad classifi-

cation and identify distinct immune networks for each archetype

with unique relationships among cell densities and chemokine

networks. Although IR archetypes are characterized by patterns

previously described inmelanoma, head and neck, or breastma-

lignancies—such as a correlation between CD8+ T cells, cDC1

ratio, and NK cell abundance (Barry et al., 2018; Salmon et al.,

2016) or between CD4+ T cell and cDC2 (Binnewies et al.,

2019; Michea et al., 2018)—other archetypes implicate different

immune cell networks such as the apparent enrichment of

plasma cells and Tregs in TC archetype. That particular co-asso-
Figure 7. Immune archetypes tie closely to tumor biology and disease

(A) Left: UMAP display and graph-based clustering of tumor immune archetypes

single patient. Right: stacked bar plot of the tumor type distribution for 10-featur

(B) UMAP overlay (left) and box and whisker plot (right) of tumor proliferation me

(C) Bubble plot of the median gene expression, in the tumor compartment, of g

grouped by cluster/archetypes in the IPI cohort.

(D and E) Heatmap and hierarchical clustering of immune archetype gene signatu

(E) in the IPI cohort.

(F) Multivariate survival regression of overall survival in the TCGA cohort for each im

T conventional subset enrichment. Median survival (MS) and p value associated

*1.00e�02 < p % 5.00e�02; **1.00e�03 < p % 1.00e�02; ***1.00e�04 < p % 1.
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ciation was previously shown to support the plasma cell resi-

dency in bone marrow, and the presence of both cell types

together associated with better response to immune checkpoint

blockade therapy in sarcoma (Glatman Zaretsky et al., 2017; Pe-

titprez et al., 2020). It is tempting to propose that tumors hijack

specific immune archetypes that originate for use in a completely

different setting (Table S6).

This idea is perhaps also suggested by the distinct patterns of

chemokine expression identified for each tumor immune arche-

type. For example, although IR CD8 archetypes are defined by a

CXCL9, CXCL10, CXCL11/CXCR3 axis that resembles the

biology of an ongoing chronic viral infection (Metzemaekers

et al., 2018), ID CD8 macrophage bias archetype is defined by

a strong expression of chemokines binding CX3CR1, which is

an axis essential in settings of immune surveillance and homeo-

stasis (Gerlach et al., 2016). Further work is certainly needed to

profile the vast array of other immune niches in homeostasis

and immune responses and to test how these linked cell states

are conserved across tissue and disease; the increasing avail-

ability of multi-omics resources will be an important step forward

(Mulder et al., 2021; Reynolds et al., 2021).

Tumor-specific genetics and mutational burden have been

proposed to be key for anti-tumor immunity in multiple cancers

(Brown et al., 2014; Ghosh et al., 2021; Goodman et al., 2017).

However, further investigation on extrapolating immune gene

signature across TCGA cohort showed no correlation between

gene expression andmutational burden in any cancer type (Bag-

aev et al., 2021; Spranger et al., 2016). Conversely, we demon-

strated that immune tumor archetypes are associatedwith tumor

proliferation, diverse tumor transcriptomic programs, and overall

survival. Studying the synergy between immune archetypes and

tumor mutational profile may further elucidate the importance of

tumormutational burden in anti-tumor immune response (Berger

et al., 2018; Quigley et al., 2018).

In summary, our comprehensive characterization of the TME

across many human solid cancer types reveals the existence

of common and reproducible immune archetypes defined by

distinct cell networks. To facilitate usage of our data for the

wide research community, we will provide access to transcrip-

tomic and compositional data for each archetype (https://

datalibrary.ucsf.edu/public-resources). It is still unclear whether

improving tumor cure rates will be based on the enhancement of

a specific archetype, and the expansion of this classification in

metastatic tumors as well as in animal models may help to test

this (Maynard et al., 2020). Moreover, it will be important to

expand this analysis to the peripheral immune system as well

as biopsies before and after immunotherapies in order to define
outcome

using 10-feature clustering color-coded by tumor type. Each dot represents a

e immune archetypes.

asured by frequency of Ki67+ CD45� cells by flow cytometry in the IPI cohort.

ene sets associated with previously identified tumor transcriptional programs

res median expression in the tumor compartment (D) and the live compartment

mune archetype after multivariate analysis using gene signatures in (E), split by

with each survival curve are noted.

00e�03; ****p % 1.00e�04. See also Figure S7 and Tables S5 and S6.
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the relationship between ‘‘dominant’’ and ‘‘reactive’’ tumor im-

mune archetype across tumor types (Grünwald et al., 2021; Bi

et al., 2021). Furthermore, there will undoubtedly be many addi-

tional ways to explore this dataset and discover patterns of im-

mune and cancer biology. In this sense, the IPI dataset and the

accompanying curation by these archetypal assignments can

now serve as a rich resource to gain deeper understanding of

cancer immunity in patients and therefore serve as a framework

to direct immunotherapies to the most relevant biology.

Limitation of the study
There are a few caveats to note that impose limitations on this

study that endeavors to define the dominant tumor immune ar-

chetypes across many tumor types. First, we used a single stan-

dardized processing approach regardless of the tumor type

which was not ideal but necessary due to the limited quantity

of available tumor tissue. Nevertheless, both simple immunoflu-

orescence and identification of archetype-specific chemokine

expression program would appear to support that we reliably

recovered cells across tissues, but some archetypes such as

the myeloid centric appear to be more impacted (Figures 2H

and 2I), and further investigation of the spatial landscape of the

tumor immune archetypes would be needed. In the future, a

combination of multiplexed imaging technologies such ion

beam imaging (MIBI) (Angelo et al., 2014; Keren et al., 2018)

and single-cell spatial transcriptomics (Asp et al., 2019; Hu

et al., 2020) will help mitigate this issue and enable analysis. In

this way, archetype-discovery will play an important role in se-

lecting tissues containing similar biology for studies.

Second, we focused our study on 10 major tumor-associated

immune cell proportions across a wide variety of human cancer

types, and this potentially biases analyses to dominant tumor ar-

chetypes becauseweonly examine pre-defined cell populations.

Interestingly, we demonstrated that the archetypes defined by

these 10 features often correlate with enrichment of immune

cell types that were not part of the clustering (Figure 6A). How-

ever, some other populations previously described as important

for the tumor immune response, such as neutrophils, gd T cells

(Coffelt et al., 2015;Wellenstein et al., 2019), or specific transcrip-

tomic states of cDCs (Barry et al., 2018;Cheng et al., 2021; Lopes

et al., 2021; Maier et al., 2020) were unable to be analyzed or ap-

peared to be variable within archetypes (Figures 6C and S6).

Future work using single-cell omics across tumor types—not

only transcriptomic based due to the sensitivity of some of those

cell types—will be critical. The combination of single-cell profiling

in the context of immune archetypeswould determine if the 12 tu-

mor archetypes identified in our study can be further subdivided

or if the cell subsets identified using these technologies generally

alignwithour current landscape (Chenget al., 2021;Oliveira et al.,

2021; Slyper et al., 2020; Zhang et al., 2020).

Finally, using the IPI cohort, we developed archetype-specific

gene signatures that enabled us to explore the association with

disease outcome on a larger scale in the TCGA cohort. The two

cohorts present important differences in term of demographics,

tissue histology, and patient clinical history. Therefore, an exten-

sion of this work on a bigger cohort with the addition of clinical

trials designed to demonstrate the benefits of targeting tumor ar-

chetypes would be incredibly important.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-human CD45 APC/e780 (clone HI30) Thermo Fisher Cat# 47-0459-42; RRID:AB_1944368

anti-human CD3e PerCP/e710 (clone OKT3) Thermo Fisher Cat# 46-0037-42; RRID:AB_1834395

anti-human HLA-DR BUV395 (clone G46-6) BD Biosciences Cat# 564040; RRID:AB_2738558

anti-human CD56 BUV737 (clone NCAM16.2) BD Biosciences Cat# 564448; RRID:AB_2744432

anti-human CD4 PE/Dazzle 594 (clone S3.5) Biolegend Cat# 100455; RRID:AB_2565844

anti-human CD8a BV605 (clone RPA-T8) Biolegend Cat# 301039; RRID:AB_11126985

anti-human CD127 BV650 (clone HIL-7R-M21) BD Biosciences Cat# 563225; RRID:AB_2738081

anti-human CD38 AF700 (clone HIT2) Biolegend Cat# 303523; RRID:AB_2228785

anti-human CD25 APC (clone 2A3) BD Biosciences Cat# 340939; RRID:AB_400551

anti-human PD-1 BV786 (clone EH12) BD Biosciences Cat# 563789; RRID:AB_2738425

anti-human FoxP3 PE/Cy7 (clone 236A/E7) Thermo Fisher Cat# 25-4777-41; RRID:AB_2573449

anti-human CTLA-4 BV421 (clone BNI3) BD Biosciences Cat# 565931; RRID:AB_2739395

anti-human/mouse/rat Ki67 AF488 (clone SolA15) Thermo Fisher Cat# 11-5698-82; RRID:AB_11151330

anti-human CD19 PerCP/e710 (clone H1B19) Thermo Fisher Cat# 45-0199-42; RRID:AB_2043821

anti-human CD20 PerCP/e710 (clone 2H7) Thermo Fisher Cat# 45-0209-42; RRID:AB_10717086

anti-human CD56 PerCP/e710 (clone CMSSB) Thermo Fisher Cat# 46-0567-42; RRID:AB_10548939

anti-human CD64 BUV737 (clone 10.1) BD Biosciences Cat# 564425; RRID:AB_2744446

anti-human CD11c AF700 (clone 3.9) Thermo Fisher Cat# 56-0116-42, RRID:AB_10547281)

anti-human CD16 BV605 (clone 3G8) Biolegend Cat# 302039; RRID:AB_2561354)

anti-human CD304 PE (clone 12C2) Biolegend Cat# 354503; RRID:AB_11219200

anti-human CD1C/BDCA-1 PE/Cy7 (clone L161) Biolegend Cat# 331515; RRID:AB_1953227

anti-human BDCA-3 FITC (clone AD5-14H12) Miltenyi Cat# 130-098-843; RRID:AB_2661177

anti-human CD14 BV711 (clone M5E2) Biolegend Cat# 301837; RRID:AB_11218986

Biological samples

Human tumor samples UC San Francisco IRB # 20-31740

Deposited data

All bulk RNaseq data for the IPI cohort and single

cell RNaseq data previously unpublished

This paper GEO: GSE184398

Single cell RNaseq data from

melanoma invaded lymph node.

(Binnewies et al., 2019) GEO: GSE125680

Single cell RNaseq data from Renal

Clear cell carcinoma

(Argüello et al., 2020) GEO: GSE159913

GitHub UCSF DSCO_

LAB Github

https://github.com/UCSF-

DSCOLAB/pan_cancer_

immune_archetypes

Software and algorithms

Python (2.7.15 & 3.7.2) https://www.python.org

Pandas (0.24.1,1.0.5) https://pandas.pydata.org/

Seaborn (0.9.0, 0.10.1) https://seaborn.pydata.org

Matplotlib (2.2.3, 3.2.2) https://matplotlib.org

Lifelines Davidson-Pilon et al., 2020 https://lifelines.readthedocs.

io/en/latest/

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Scanpy 1.5.1 Wolf et al., 2018 http://scanpy.readthedocs.io/

en/stable

SciPy Virtanen et al., 2020 https://scipy.org/

BWA-mem http://bio-bwa.sourceforge.net/

RSEM Li and Dewey, 2011 http://deweylab.biostat.wisc.

edu/rsem/README.html

Imaris v9.5 https://imaris.oxinst.com/

STAR Dobin et al., 2013 N/A

limma Ritchie et al., 2015 https://bioconductor.org/

packages/release/bioc/html/

limma.html

edgeR Robinson et al., 2010 https://bioconductor.org/

packages/release/bioc/html/

edgeR.html

voom Law et al., 2014 https://www.rdocumentation.

org/packages/limma/

versions/3.28.14/topics/voom

R R Development Core

Team, 2010

https://www.r-project.org/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Matthew F.

Krummel (matthew.krummel@ucsf.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Single-cell RNA-seq and bulk RNaseq data have been deposited at GEO and are publicly available as of the date of publication.

Accession numbers are listed in the key resource table. Microscopy and flow data reported in this paper will be shared by the

lead contact upon request.

All original code has been deposited at GitHub and is publicly available as of the date of publication. DOIs are listed in the Key

resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human tumor collection of the UCSF Immunoprofiler Initiative (IPI)
Tumor samples for the Immunoprofiler was transported from various cancer operating rooms (ORs) as well as from outpatient clinics.

All patients consented by the UCSF IPI clinical coordinator group for tissue collection under a UCSF IRB approved protocol (UCSF

IRB# 20-31740). Samples were obtained after surgical excision with biopsies taken by Pathology Assistants to confirm the presence

of tumor cells. Patients were selected without regard to prior treatment. Freshly resected samples were placed in ice-cold PBS or

Leibovitz’s L-15medium in a 50mL conical tube and immediately transported to the laboratory for sample labeling and prepare either

the whole tissue for digestion into single-cell suspension or a part of the tissue was sliced and preserved for imaging analysis. All

Clinical information on the different patient of the cohort can be found in Table S1.

Assembling Cohorts
UCSF Immunoprofiler initiative (IPI)

An initial set of 427 bulk RNaseq patient samples in the live compartment were evaluated based on an in-house metric, the EHK

score, that serves as a measure of data quality. Each sample is given a score of 0 through 10 depending on the number of EHK genes

that are expressed above a precalculated minimum threshold. The threshold was learned from our data by examining the expression

distributions of EHK genes and validated using the corresponding distributions in TCGA. A score of 10 represents the highest quality
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data where 10 out of 10 EHK genes are expressed above the minimum threshold. Filtering for samples with an EHK score of EHK8,

EHK9 and EHK10 reduced the sample set to 298 patient samples. The sample set was then filtered to remove all adjacent normal

samples and all biological replicates, reducing the sample set further to 260 samples. These 260 patient samples are the IPI cohort

along with 199 overlapping tcell compartment samples and 189 myeloid compartment samples.

TCGA

Tumor RNaseq counts and TPM along with curated clinical data for 13 cancer types (Bladder urothelial carcinoma (BLCA),

Colon adenocarcinoma (COAD), glioblastoma multiforme (GBM), Head and Neck squamous cell carcinoma (HNSC), Kidney

renal clear cell carcinoma (KIRC), Liver hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Ovarian serous cysta-

denocarcinoma (OV), Pancreatic adenocarcinoma (PAAD), Sarcoma (SARC), Skin Cutaneous Melanoma (SKCM), Uterine

Corpus Endometrial Carcinoma (UCEC), Uterine Carcinosarcoma (UCS)), from the Toil recompute (Vivian et al., 2017) data

in the TCGA Pan-Cancer (PANCAN) cohort, were downloaded from the UCSC Xena browser (Goldman et al., 2020). The initial

set of 4677 tumor samples was filtered down to include primary solid tumors and metastatic sample types (sample type co-

des = 01 & 06) only, to parallel the IPI cohort sample types as accurately as possible. This reduced the patient sample set to

4341 tumor samples.

METHOD DETAILS

Human tissue digestion and Multiparametric Flow Cytometry staining and sorting
Tumor or metastatic tissue was thoroughly chopped with surgical scissors and transferred to GentleMACs C Tubes (Miltenyi Biotec)

containing 20 uL/mL Liberase TL (5 mg/ml, Roche) and 50 U/ml DNase I (Roche) in RPMI 1640 per 0.3 g tissue. GentleMACs C Tubes

were then installed onto the GentleMACsOcto Dissociator (Miltenyi Biotec) and incubated for 45min according to themanufacturer’s

instructions. Samples were then quenched with 15 mL of sort buffer (PBS/2% FCS/2mM EDTA), filtered through 100 um filters and

spun down. Red blood cell lysis was performed with 175 mM ammonium chloride if needed.

Cells were then incubated with Human FcX (Biolegend) to prevent non-specific antibody binding. Cells were then washed in DPBS

and incubated with Zombie Aqua Fixable Viability Dye (Thermo). Following viability dye, cells were washed with sort buffer and incu-

batedwith cell surface antibodiesmix diluted in theBV stain buffer (BDBiosciences) followingmanufacturer instruction for 30minutes

on ice in the dark and subsequently fixed in either Fixation Buffer (BD Biosciences) or in Foxp3/Transcription Factor Staining Buffer

Set (eBioscience) if intracellular staining was required.

Cell sorting for bulk RNA sequencing
Bulk RNaseq compartment Gating Strategy Potential Caveats

All viable cells ‘Live’ compartment All cells Viability dye negative

LIVE/DEAD Fixable Aqua Dead

Cell Stain Cat:L34957

This was performed after tissue enzymatic digestion

and allow us to sequence only viable cells after

isolation. Therefore it is slightly different than bulk

RNaseq from whole tissue prior digestion as it was

done in the TCGA dataset.

Conventional CD4+ and

CD8+ T cells compartment

CD4+ and CD8+ Tconv:

CD45+, CD3+, CD4+, CD8+,

CD25- CD19/20-, CD56-

Using this gating strategy we aimed to enrich for both

Conventional CD4+ and CD8+ T cells but we don’t

separate CD4+ and CD8+

Regulatory CD4+ T

cells compartment

Treg: CD45+, CD3+, CD4+,

CD8-, CD25+, CD19/20-, CD56-

Using this gating strategy we aimed to enrich for

Tregulatory T cells using CD 25 expression but as we

can’t use FOXP3 for sorting unpermeabilized viable

cell this compartment may contain some activated

CD4+ T cells.

Myeloid cells compartment CD45+, CD3+, CD19-,

CD20- CD56- HLA-DR+

Using this gating strategy we aimed to enrich for tumor

associated myeloid cell however this compartment

may contain plasma cells which would have

downregulate CD19/20 but still express HLA-DR

Cd44+ CD90 stromal

cells compartment

CD45-, CD44+, CD90+ Using this gating strategy we aimed to enrich for one

type of stromal cells however this gating strategy

doesn’t encompass all stromal cell subtype present

in tumor

CD45- Tumor cell compartment CD45-, CD44-, CD90- Using this gating strategy we aimed to enrich for tumor

cells however this gating strategy is permissive and

this compartment may contain other tumor associated

non immune cell types
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For cell sorting single cell suspension was stained with cell surface antibodies mix diluted in BV stain buffer (BD Biosciences)

following manufacturer instruction for 30 minutes on ice in the dark and subsequently washed three time and resuspended in

of sort buffer (PBS/2% FCS/2mM EDTA) after filtering in 100um filter (thermo). When possible, a maximum of 6 different tumor

associated cell subsets were sorted with a BD FACSAria Fusion into 1.5mL Eppendorf tubes containing 150ul of lysis buffer used

for mRNA extraction (Invitrogen). The 6 different tumor associated cell types between 5000 and 50000 cells were sorted based their

protein expression profile as describe here: ‘live cells’ all cells negative for the viability dye; Tconv: negative for viability dye CD45+

CD3+ CD19- CD56- CD25-; Treg: negative for viability dye CD45+ CD3+ CD19- CD56- CD4+ CD25+; Myeloid: negative for viability

dye CD45+CD3- CD19- CD56- HLADR+; CD90+CD44+ Stroma: negative for viability dye CD45- CD44+CD90+; Tumor: negative for

viability dye CD45- CD44- CD90-. Names of the different sorted populations were given based on the presumptive populations, and

we accepted that both due to slight sorting contamination and due to the limits of antibodies to completely ‘define’ a population, that

other populations would occasionally infiltrate these e.g., some ‘activated’ CD4 cells express CD25 and might infiltrate this RNA

sample.

Cell sorting for single-cell RNA sequencing of the tumor associated mononuclear phagocytic cells
For the discovery cohort scRNA-seq, live CD3-CD19/20-CD56- SSC-A dim CD16 dim (to exclude neutrophils) cells were sorted from

a melanoma involved draining LN on a BD FACSAria Fusion. For the discovery cohort the same sorting strategy was applied to mel-

anoma, kidney and head and Neck primary tumors. After sorting, cells were pelleted and resuspended at 1x10e3 cells/ul in 0.04%

BSA/PBA and loaded onto the Chromium Controller (10X Genomics). Samples were processed for single-cell encapsulation and

cDNA library generation using the ChromiumSingle Cell 30 v2 Reagent Kits (10XGenomics). The library was subsequently sequenced

on an Illumina HiSeq 4000 (Illumina). All samples were sequenced at 25,000 reads per cell.

Imaging Staining and Acquisition
H&E slides were prepared in Leica Autostainer XL; slides stained in hematoxylin (Thermo Scientific Shandon Instant Hematoxylin

cat. 6765015) for 7 minutes and in Eosin (Thermo Scientific Shandon Instant Eosin-Y Alcoholic cat. 531946) for 20 s. Immunoflu-

orescence (IF) staining was performed on the Ventana Discovery Ultra autostainer using Discovery reagents (Ventana Medical

Systems) according to the manufacturer’s instructions, except as noted. After deparaffinization, antigen retrieval was performed

with Cell Conditioning 1 (CC1) solution (cat. 950-124) for 64 minutes at 95�C. Primary antibody CD45 (D9M8I by CST #13917), was

incubated for 20 minutes at 36�C. Secondary antibodies (cat. 760-149) were incubated for 12 minutes. Endogenous peroxidase

was inhibited by Discovery Inhibitor (cat. 760-4840) for 8 minutes and non-specific binding blocked with Goat block (cat. 760-

6008) for 4 minutes. The primary antibody was visualized with Discovery Rhodamine 6G Kit (cat. 760-244). Finally, slides were

counterstained with DAPI (Akoya cat. FP1490) for 8 minutes. IF slides were scanned in a whole slide scanner AxioScan.Z1 (Zeiss)

with Plan-Apochromat 20x/0.8 M27 objective and images were captured by Orca-Flash 4.0 v2 CMOS camera (Hamamatsu). Fil-

ters used for specific fluorophores are: Spectral Gold (Semrock) filter was used for Rhodamine 6G and 87 HE DAPI (Zeiss) for DAPI.

H&E slides were scanned in brightfield with the same objective and a HV-F202SCL CCD camera (Hitachi).

Bulk RNA-Sequencing
Library Preparation

The mRNA was isolated via DynaBeads Direct, then converted into amplified cDNA using Tecan Ovation RNA-Seq System V2 kit,

following the manufacturer protocol. The dsDNA went through tagmentation, amplification and clean up with AMPure XP beads

steps, using the Illumina Nextera XT DNA Library Prep Kit. Quality control analysis was performed on the resulting pooled libraries

with the Agilent Bioanalyzer HS DNA chip to assess fragment size distribution and concentration.

Sequencing

The pooled libraries were then sequenced via single-read MiSeqMiniSeq to check if more than 10 percent of the reads aligned to

coding regions and contained more than 1,000 unique reads in total. Sequencing efficiency was determined by protein-coding

read fractions. The protein-coding read fractions were then used to normalize libraries for high depth sequencing with the goal of

obtaining an average of 10M protein-coding reads per sample. These libraries were submitted the UCSF Center for Advanced Tech-

nology for 100bp paired end (PE100) sequencing on the HiSeq4000.

Bioinformatic Data Processing
Bulk RNaseq

The RNaseq reads were first aligned to reference of rRNA and mitochondrial rRNA using BWA-mem to deplete the dataset of any

remaining rRNA. The remaining reads were aligned to the Ensembl GRCh38.85 transcriptome build using STAR (Dobin et al.,

2013). Gene expression was computed from the alignments in counts and TPM (transcripts per million) using RSEM (Li and Dewey,

2011).

QC of Bulk RNaseq

QC of the of the RNaseq was done to identify any swapped samples. DEG was performed on all pairs of the tcell, myeloid, treg,

stroma and tumor compartments. The top 500 genes by p value were identified for each DEG pair giving 5000 genes which were

reduced to 2171 genes after removing redundant genes. Principal component analysis (PCA) was done on the mean-centered
Cell 185, 184–203.e1–e9, January 6, 2022 e4
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and scaled logCPM (log counts per million) of the counts of these genes. K-means clustering was performed on the first 4 principal

components with K = 5. This yielded 5 clusters that were mostly made up of one compartment. Any samples that clustered with a

different compartment were considers swaps except for the tumor compartment which we assumed would be promiscuous.

Data pre-processing of 10x Genomics Chromium scRNA-seq data:

Feature-barcode matrices were obtained for sample by aligning the raw fastqs to GRCh38 reference genome (annotated with En-

sembl v85) using the Cellranger count. Raw feature-barcode matrices were loaded into Seurat 3.1.5 (Stuart et al., 2019) and genes

with fewer than 3 UMIs were dropped from the analyses. Matrices were further filtered to remove events with greater than 20%

percent mitochondrial content, events with greater than 50% ribosomal content, or events with fewer than 100 total genes. The

cell cycle state of each cell was assessed using a published set of genes associated with various stages of human mitosis (Domi-

nguez et al., 2016).

Data quality control and Normalization for scRNA-seq data:

The filtered count matrices were normalized, and variance stabilized using negative binomial regression via the scTransformmethod

offered by Seurat (Hafemeister and Satija, 2019). The effects of mitochondrial content, ribosomal content, and cell cycle state were

regressed out of the normalized data to prevent any confounding signal. The normalizedmatrices were reduced to a lower dimension

using Principal Component Analyses (PCA) and the first 30 principal coordinates per sample were subjected to a non-linear dimen-

sionality reduction using UMAP reduction. Clusters of cells sharing similar transcriptomic signal were identified using the Louvain

algorithm, and clustering resolutions varied between 0. 6 and 1.2 based on the number and variety of cells obtained in the datasets.

Data integration and Batch correction for the scRNA seq validation dataset

The individual processed objects per library were normalized, and variance stabilized using negative binomial regression via the

scTransform method offered by Seurat (Hafemeister and Satija, 2019). Counts matrices were merged into a single Seurat object

and the batch (or library) of origin was stored in the metadata of the object. The log-normalized counts were reduced to a lower

dimension using PCA and the individual libraries were aligned in the shared PCA space in a batch-aware manner (Each individual

library was considered a batch) using the Harmony algorithm (Korsunsky et al., 2019). The resulting Harmony components were

used to generate a batch corrected UMAP, and to identify clusters of transcriptionally similar cells across each of the 11 samples.

The 5 Genes signature identified in the discovery dataset from the melanoma tumor sample was used to identify monocytes, mac-

rophages, cDC2 and cDC1 respectively.

Single Cell RNaseq intra-sample heterotypic doublet detection:

All libraries were further processed to identify heterotypic doublets arising from the 10X sample loading. Processed, annotated

Seurat objects were processed using the DoubletFinder package (McGinnis et al., 2019). Briefly, the cells from the object are modi-

fied to generate artificial duplicates, and true doublets in the dataset are identified based on similarity to the artificial doublets in the

modified gene space. The prior doublet rate per library was approximated using the information provided in the 10x knowledgebase

(https://kb.10xgenomics.com/hc/en-us/articles/360001378811) and this was corrected to account for homotypic doublets using the

per-cluster numbers in each dataset.

Imaging bioinformatics

Each image was processed and analyzed in Imaris v9.5 (Bitplane Inc.). We first applied a median filter with size 3x3x1 to every chan-

nel of the image. The background of each channel was then subtracted using a filter width of 100um. Next, we used the Spots func-

tion to detect cell nuclei in the DAPI channel. We then applied a binary threshold on the max intensity of the CD45 channel to classify

each spot as positive or negative for CD45.

We then cropped out a 650um x 650um section containing the tumor border from each histological image. This same section of

tissue was found in the immunofluorescence image by looking for tissue features shared between the Immunofluorescence (IF) and

histological images. Using the CD45 counts described above, two representative images from each immune class were selected.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis using 3 Features – Tcell, Myeloid, CD90+ CD44+ Stroma
In this part we will describe how we calculated the three first features used to perform the KNN clustering namely: Tcell, Myeloid,

CD90+ CD44+ Stroma.

Gene Signature

Gene signatures for each of the features (Table S4) were generated by performing differential gene expression (DEG) analysis, be-

tween the different sorted RNaseq compartments, using edgeR (Robinson et al., 2010), limma (Ritchie et al., 2015) and Voom (Law

et al., 2014), a function of limma thatmodifies RNaseq data for usewith limma. Expression counts for all EHK10 samples in each of the

compartments (tcell, myeloid, stroma, treg and tumor) were selected to ensure the DEG analysis was done using the highest quality

data. The median adjusted p value for these DEGs were values much less than 1.00 3 10�55 across all comparisons. For the Tcell

feature gene signature, DEG analysis was done between the tcell compartment and the stroma, myeloid, and tumor compartments

separately. The intersection of the top 50 genes by log fold change (logFC) for each of these three comparisons was designated the

Tcell feature gene signature. Similarly, a CD90+ CD44+ Stroma feature gene signature was designated as the intersection between

DEG comparisons of the stroma compartment versus the myeloid, tumor and tcell compartments. For the Myeloid feature gene

signature, it was necessary to use the top 100 genes by logFC from the DEG between the myeloid compartment and tcell
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compartment to compensate for the fact that myeloid cells are more auto fluorescent and thus more likely to contaminate the tcell

compartment sort. The stroma and tumor compartments are sorted from CD45- and are less likely to experience this issue. The pro-

cess of feature gene signature selection for each of the three features was visualized with volcano plots that showed the DEG results

and Venn diagrams that showed the intersection of the top genes from each DEG and the resulting feature gene signature.

Flow Score

The flow scores for the flow cytometry population ratios were calculated by scaling the ratios from 1-100. This was done by calculating

the percentile rank of each population ratio relative to the other population ratios. For example, a percentile rank of 65 means that that

65% of the population ratios are below that ratio. This array of percentile ranks was then further transformed to percentile ranks to in-

crease thespread in thescores.Boxplotsweregenerated tovisualize thescoresbycancer typeusingSeabornapythonplottingmodule.

Gene Signature Score

The feature gene signature scores were calculated using an m x n matrix where m represented the TMM (Robinson and Oshlack,

2010) normalized logCPM (log2 counts per million) expression of the feature signature genes and n represented the selected sample

set. TMM normalization is a method that adjusts library size so samples can be compared, since sequencing depth can differ be-

tween samples.

The expression of each gene was converted to percentile ranks across the samples using the SciPy (Virtanen et al., 2020) Python

module.

E/P
where: E = m x n matrix of gene expression
p = m x n matrix of gene expression percentile ranks across samples

A score was generated for each sample n follows:

Scoren = percentileðAverageðPnÞÞ
where: Pn = column n of P corresponding to sample n
(The second percentile transformation was employed to increase the spread between the scores).

Boxplots were generated to visualize the distribution of feature scores by cancer type with statistical analysis between archetypes

performed using the statannot python package. We used the Mann-Whitney test between two archetypes, as we could not assume

normal distributions, with the Bonferroni correction for multiple comparisons. The significance levels were annotated on the boxplots

using the P value annotation legend below.
Annotation P value Range

ns 5.00e-02 < p % 1.00e+00

* 1.00e-02 < p % 5.00e-02

** 1.00e-03 < p % 1.00e-02

*** 1.00e-04 < p % 1.00e-03

**** p % 1.00e-04
For the IPI gene signature scores for the Tcell, Myeloid, CD90+ CD44+ Stromawere calculated using the live compartment. For the

TCGA cohort the gene signature scores for the Tcell, Myeloid and CD90+ CD44+ Stroma features were calculated for all tumor type.

Cross-Whisker plots, that show themedian value, the interquartile range (IQR) in both the x and y directions and the identity line, were

made to compare the median Tcell, Myeloid and CD90+ CD44+ Stroma feature scores in the IPI cohort with the TCGA cohort. Based

on the Cross-Whisker plots only the BLCA, COAD, UCS, UCEC, OV, HNSC, KIRC, SARC and SKCM, cancer type were used for

further analysis as their, median scores per tumor type appeared to correlate well with the IPI patient samples. The rationale behind

including only tumor type that correlated well with IPI was to ensure that further analysis in TCGA would have extrapolated relevance

in the IPI patient samples. The excluded cancer type lack of correlation with IPI patient samples could be attributed to variety of rea-

sons that cannot be easily controlled, e.g., technical variability in upstream processing steps and cohort race differences due to local

demographic biases.

Gene Signature Score Validation

Based on the assumption that the flow cytometry population ratios represent the true feature abundance in the patient sample, cor-

relation between flow cytometry population ratios and feature gene signatures were used to validate the feature gene signatures. On

average 9 to 10 samples per cancer type, that had both flow cytometry data and RNaseq data in the relevant compartments, were

selected (Table S3). There were fewer samples selected in PDAC (Pancreatic), PNET(Neuroendocrine) and GBM(Glioblastoma) can-

cer type as there were not many representative samples for theses cancer in the IPI cohort. Correlation plots were generated using

the scores and their corresponding flow population ratios and the Spearman’s rho was calculated for each of the correlations.
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Additionally, the Tcell and Myeloid feature samples were submitted to CIBERSORT (Newman et al., 2015). The TPMs of all protein

coding genes of the samples were input as the mixture file, the built in LM22 gene signatures were used and quantile normalization

was disabled as this was the recommended setting for RNaseq data. The CIBERSORT score used for the Tcell feature was the sum-

mation of the T cells CD8, T cells CD4 naive, T cells CD4 memory resting, T cells CD4 memory activated, T cells follicular helper, T cells

regulatory (Tregs) and T cells gamma delta cell type relative fractions. The CIBERSORT score used for theMyeloid feature was the sum-

mation of the Macrophages M0, Macrophages M1, Macrophages M2, Dendritic cells resting, Dendritic cells activated, Mast cells

resting, Mast cells activated, Eosinophils and Neutrophils cell type relative fractions. Correlation plots were generated using these CI-

BERSORT scores and their corresponding flow population ratios and the Spearman’s rho was calculated for each of the correlations.

Clustering

The feature gene signature scores in the IPI cohort were clustered using SCANPY (Wolf et al., 2018) a Python-based toolkit. The

feature clustering was done in three steps. In the first step, a neighborhood graph was constructed using the k-nearest neighbors

(KNN) algorithm with Euclidean distances. In the second step, the neighborhood graph was clustered using the Louvain method

(Blondel et al., 2008), a community detection algorithm that maximizes network modularity. In the third step, the resulting clustering

was evaluated using the Davies Bouldin Index (DBI) (Davies and Bouldin, 1979), a metric that assesses the ratio of the intra-cluster

distance to inter-cluster distance. The lower the DBI the better the separation between clusters, the more compact the samples

within clusters and hence the better the clustering. The clustering steps were repeated incrementally over values of n between 3

to 300 for the nearest neighbors for KNN. At each iteration of n, the values for the resolution parameter for Louvain clustering

were varied between 0.3 to 2 in 0.1 increments. The formula below was used to optimize the nearest neighbor and resolution param-

eters for final cluster selection.

min½DBIðClustern;resÞ�
Where: n = [3,4,5.,300] (KNN nearest neighbor)
res = [03,0.4,0.5.,2] (resolution)

In the TCGA cohort the feature signature score clustering was done as above except for the values for the range of n for KNNwhich

was 3-1,500 as the number of samples in the TCGA cohort were greater.

The final clustering selections were given archetype labels based on the prevalence and distributions of the features within the

cluster which were visualized as violin plots of all clusters in each feature. Both the IPI and TCGA final clustering selections had

six clusters and hence six archetypes. The final clustering selection (IPI-was visualized as UMAP (McInnes et al., 2018), a dimension-

ality reduced projection of the clustering. The min-dist UMAP parameter, which is the minimum distance between points, controls

how close together points are placed in the low-dimensional space of the UMAP was set as of 0.25. Population flow proportions

and phenotype gene signatures were overlayed on the UMAP clustering.

Univariate survival analysis on the TCGA data was performed per cancer type and multivariate survival regression was performed

across all cancer types using cancer types as a covariates using lifelines. Pie charts weremade to compare the archetype abundance

per tumor type between IPI and TCGA. Additionally, 3D plots of IPI score and TCGA score visualized the distribution of the unclus-

tered scores.

Phenotype Gene Signatures

The Chemokine gene signature (Table S5) was a selection of 39 chemokines (Nagarsheth et al., 2017) of interest andwas evaluated in

the live compartment to generate a score. Hierarchical clustered heatmaps were made to assess chemokine expression in arche-

types. The median TPM expression per archetype of each of the 39 chemokines in the Chemokine gene signature were clustered

using the Euclidean distance metric and the Ward linkage method. A bubble plot was made to compare the median TPM expression

of Chemokine gene signature genes in IPI and TCGA in each archetype. The bubble size represented values of the median TPM in

each archetype transformed to a z-score.

Analysis using 6 Features – Tcell, Myeloid, CD90+ CD44+ Stroma, CD4, CD8, Tregs
Gene Signature – CD4, CD8 and Tregs

CD4 high and CD8 high samples were identified based on the flow proportion of (CD4+, CD25-, FOXP3-) / CD3+ and (CD8+, CD4-) /

CD3+ respectively. There were nine samples that were both EHK10 in the tcell compartment of RNaseq and had a (CD4+, CD25-,

FOXP3-) / CD3+ flow proportion greater than 60%, thesewere labeled CD4 high. Similarly, there were 12 samples that were EHK10 in

the tcell compartment of RNaseq that had a (CD8+, CD4-) / CD3+ flow proportion greater than 60%, these were labeled CD8 high.

The CD4 gene signatures were generated by performing DEG analyses using edgeR and voom on the tcell compartment counts of

CD4 high samples versus CD8 high samples. The top 50 genes by adjusted P value were selected and all genes within this gene set

that had a positive logFC were designated the CD4 feature gene signature. The same was done for the CD8 feature gene signature

except the DEG was CD8 high samples versus CD4 high samples (Table S4). A hierarchical clustered heatmap was made using the

CD4 and CD8 gene signature logCPM values for all tcell compartment patient samples. The logCPM values weremean-centered and

scaled prior to clustering using the Euclidean distance metric and the Ward linkage method.
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The Treg feature gene signature followed all the same steps as the Tcell feature gene signature but with four DEG comparisons

instead of three, the treg compartment versus the tcell, myeloid, stroma and tumor compartments. The resulting intersection of these

four comparisons was designated the Treg feature gene signature.

Gene Signature Score

Gene signature scores for the three new features were calculated as described above for three features. The CD4 and CD8 gene

signatures were evaluated in the tcell compartment and the Treg gene signature was evaluated in the live compartment. Correlation

between flow cytometry population ratios and feature gene signatures were plotted used to validate the feature gene signatures.

Calculated Score for Missing Data

The IPI cohort consists of 260 patient samples that all have a live compartment sequenced. However, there are only 199 overlapping

patient samples with the tcell compartment sequenced. Since the CD4 and CS8 gene signature score were evaluated in the tcell

compartment a need for a method to calculate scores for missing data was warranted. Gene signature scores were calculated for

missing patient samples by leveraging the fact that there was very high correlation between gene signatures scores and their cor-

responding flow population ratios. For example, the correlation between the Tcell gene signature score and the CD3+ / live popula-

tion ratio from flow cytometry had a Spearman’s rho of 0.91. The missing scores were calculated by modeling the correlation using

linear regression and using the regression equation and the flow population ratios to calculate the score. Of the 61 missing tcell

compartment samples 5 did not have flow data.

Clustering

The feature gene signature scores for the six features were clustered as described above. The final clustering selections had eight

clusters and hence eight archetypes. The final clusteringwas visualized as a UMAP. Population flow proportions and phenotype gene

signatures were overlayed on the UMAP clustering.

Phenotype Gene Signatures

Hierarchical clustered heatmaps were made to assess chemokine expression in archetypes. Themedian TPM expression per arche-

type of each of the 39 chemokines in the Chemokine gene signature were clustered using the Euclidean distancemetric and theWard

linkage method.

Analysis using 10 Features – Tcell, Myeloid, CD90+ CD44+ Stroma, CD4, CD8, Tregs, Macrophages, Monocytes,
cDC1, cDC2
Gene Signature – Macrophages, Monocytes, cDC1 and cDC2

Gene signatureswere generated from the discovery single cell RNaseq on tumor associatedmononuclear phagocytes (MNP) dataset

using a melanoma tumor sample. Gene signatures were generated using the FindMarkers/FindAllMarkers functions in Seurat. The

genes that were considered significant had a log-fold change greater than 0.4, an adjusted p value less than or equal to 0.05 (based

on Bonferroni correction) and were expressed in at least 35% of the groups. Cluster marker genes were identified as the top upre-

gulated genes of the DEGs between clusters and curated based on their log-fold change as well as low expression by the other clus-

ters. The different subsets of mononuclear phagocytic cells were identified by comparing cluster marker genes with public sources

referenced in the text. The list of the different genes for each subset is listed in Table S4.

Gene Signature Score

Gene signature scores for the four new features were calculated as described above for three features. The gene signatures were

evaluated in the myeloid compartment Correlation between flow cytometry population ratios and feature gene signatures were

plotted used to validate the feature gene signatures.

Calculated Score for Missing Data

Of the of 260 patient samples that all have a live compartment sequenced there were only 189 overlapping patient samples with the

myeloid compartment sequenced. The same method used to calculate missing data scores for the CD4 and CD8 gene signatures

was used for missing data in the Macrophage, Monocyte, cDC1 and cDC2 gene signature. Of the 71 missing myeloid compartment

samples 15 did not have flow data.

Clustering

The feature gene signature scores for the 10 features were clustered as described above. The final clustering selections had 12 clus-

ters and hence 12 archetypes. The final clustering was visualized as a UMAP. Population flow proportions and phenotype gene

signatures were overlayed on the UMAP clustering. Alluvial plots were made using RAWgraphs (Mauri et al., 2017) to visualize the

stability of clusters as the clustering progressed from six features to ten features.

Phenotype Gene Signatures

Phenotype gene signatures (Table S5) were used to further characterize the immune archetypes obtained by clustering feature

scores generated from the feature gene signatures. The phenotype gene signatures were assembled from standard gene signatures,

derived from analysis of IPI samples or curated from gene sets found in literature.

The Tcell Exhaustion gene signature was generated by correlating the expression of all protein coding genes in EHK10 samples

from the tcell compartment with the expression of five genes, CTLA4, PDCD1, CD38, HAVCR2 and LAG3, a subset of a published

T cell exhaustion gene signature (Bengsch et al., 2018). The top 50 genes by Spearman’s rho for each of the five correlations were

selected as gene sets and genes that fell in the intersection of at least four of these gene sets were designated as the Tcell Exhaustion

feature gene signature. The Spearman’s rho of the CTLA4, PDCD1, CD38, HAVCR2 and LAG3 against the Tcell Exhaustion gene
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signature genes with additional known exhaustion genes were plotted on heatmap to illustrate the gene signature selection criteria.

The ISG, Senescence, EMT, Fibrosis, Cell Stress DNA damage, Cell Cycle G1-S and Cell Cycle G2-M genes signatures were from

literature (Kinker et al., 2019; Muñoz et al., 2019; Wiley et al., 2017). A bubble plot was made to visualize the median TPM expression

per archetype in the tumor compartment. The bubble size and color represented values of the median TPM in each archetype, trans-

formed to a z-score.

The NK cell gene signature was from literature (Barry et al., 2018), the B cells gene signature was from Chen et al. (2020) and van

Galen et al. (2019), the Plasma cells gene signature was fromChen et al. (2020) and van Galen et al. (2019) and theMast cell signature

was fromCheng et al. (2021). A bubble plot wasmade to visualize themedian TPMexpression per archetype in the live compartment.

The bubble size and color represented values of the median TPM in each archetype, transformed to a z-score.

The Th1, Th2, Th17, Trm and Tex gene signatures were from Kumar et al. (2017), Savas et al. (2018), Zhou et al. (2009), and

Bengsch et al. (2018).

The Resting Tregs, Suppressive Tregs, Tissue Homing Tregs, Treg Activation, Treg Cytokines, Treg Metabolism were from Arce

Vargas et al. (2018), Ephrem et al. (2013), Plitas et al. (2016), and Zemmour et al. (2018).

The M1, M2 and Costimulatory molecule gene signatures were from Biswas et al. (2013), Cassetta et al. (2019), Maier et al. (2020),

and Roberts et al. (2016). A bubble plot was made to visualize the median TPM expression per archetype in the myeloid. The bubble

size and color represented values of the median TPM in each archetype, transformed to a z-score.

The MHC Class I gene signature was from HGNC (https://www.genenames.org). The ISG gene signature was from Combes et al.

(2021). A boxplot was made to visualize the scores per archetype that were calculated in the live compartment.

A hierarchical clustered heatmap was made to visualize the Th1, Th2, Th17, Trm, Tex, Resting Tregs, Suppressive Tregs, Tissue

Homing Tregs, Treg Cytokines, Treg Activation, Treg Metabolism, NK cells, Plasma cells, B cells, M1, M2, Costimulatory molecule,

and ISG gene signature gene expression. These genes for each of the phenotype gene signatures were assessed different RNaseq

compartments as described above. The median TPM expression per archetype of each of the genes in the gene signatures were

clustered using correlation distance metric and the average linkage method.

Immune Archetype Gene Signatures

Live. Archetype gene signatures were generated by DEG analysis, between the live compartment counts of samples in each of the 12

archetypes, using limma and Voom. The intersection between the top 3000 genes by logFC of each of 11 DEGs per archetype was

assigned as an initial gene signature. If the initial gene signatures had less than 20 genes it was designated as the archetype gene

signature. Otherwise, the archetype gene signature was designated as the top 20 genes with both the lowest coefficient of variation

(CV) of the log10(TPM+0.001) expression and non-zero expression in at least 80% of the samples in the archetype. A hierarchical

clustered heatmap was made to visualize archetype gene signature gene expression. The median TPM expression per archetype

of each of the genes in the gene signatures were clustered using correlation distance metric and the average linkage method.

Tumor. Archetype gene signatures were generated by DEG analysis, between the combined tumor and epcam compartment

counts of samples in each of the 12 archetypes, using edgeR and Voom. The intersection between the top 100 genes by logFC of

each of 11 DEGs per archetype was assigned as an initial gene signature. If the initial gene signatures had less than 10 genes it

was designated as the archetype gene signature. Otherwise, the archetype gene signature was designated as the top 10 genes

with both the lowest coefficient of variation (CV) of the log10(TPM+0.001) expression and non-zero expression in at least 80% of

the samples in the archetype. A hierarchical clustered heatmap using correlation distance metric and the average linkage method

was made for the median TPM expression per archetype of each of the genes in the gene signatures.

Live Archetype Gene Signature Score

Using TCGA data, a gene signature score for each archetype was calculated using the gene signature score method above. Each

sample has 12 scores for each archetype. Each sample was assigned to the archetype for which it had the highest score and if

the highest score was tied between archetypes, the sample was excluded from the analysis.

Univariate survival analysis was performed per cancer type and multivariate survival regression was performed across all cancer

types using cancer types as a covariates. The analysis was done using lifelines (Davidson-Pilon), a survival analysis Python library. If

an archetype had less than fifteen representative samples, it was excluded from analysis. Pie charts were made to compare the

archetype abundance per cancer type between IPI and TCGA.

ADDITIONAL RESOURCES

To facilitate usage of our data for the wide research community, we will provide access to transcriptomic and compositional data for

each archetype: https://datalibrary.ucsf.edu/public-resources.
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Figure S1. Generation and validation steps of T cells, myeloid cells, and stromal cells features from solid tumors using flow cytometry and

bulk RNA-seq, related to Figure 1

A.-Left- Sorting strategy for the 6 tumor associated cell compartments including All viable cells (black), T cells (Green), Tregs (Yellow),myeloid cells (Blue),

CD90+,CD44+ Stromal cells (Red) and Tumor (Pink)-Right- 3D projection using K-means clustering on PC-1,2 and 3 of the top 500 genes expression per DEGpair

(5000 genes total) (k = 5). B. Volcano plots, Venn diagrams and gene names showing the method of feature gene signature discovery for the Tcell, Myeloid and

CD90+ CD44+ Stroma features using differential gene expression in tumor associated sorted compartments (see STAR Methods). C. Correlation plots of Tcell

and Myeloid gene signature score against their corresponding flow population fraction (top) and CIBERSORT derived fraction (bottom) color-coded by tumor

type. D. Box and whisker plots of Tcell, Myeloid and CD90+ CD44 Stroma features gene scores in the IPI cohort. E. Cross-whisker plots comparing median Tcell,

Myeloid and CD90+ CD44+ Stroma gene signature scores by tumor type between the IPI and TCGA cohorts with interquartile range on both axes. Statistical

difference between IPI and TCGA dataset within cancer type has been assessed by Wilcoxon-Mann-Whitney *p value < 0.05.

ll
Resource



(legend on next page)

ll
Resource



Figure S2. Identification of coarse immune archetypes in solid tumors using Louvain clustering on two independent datasets, related to

Figure 2

A, B. Scatterplot of the Davies-Bouldin index and cluster size over multiple iterations of Louvain clustering and varying parameters using 3 features in the IPI (A) or

TCGA (B) cohort. C. 3D plot of Tcell, Myeloid and CD90+ CD44+ Stroma scores color-coded by their cluster assignment from Louvain clustering these features in

the IPI (left) and TCGA (right) cohorts. D. Violin plots of the Tcell, Myeloid and CD90+ CD44+ Stroma features for each cluster/archetype in TCGA cohort. E. Box

andwhisker plot of a pan chemokine gene score by cluster/archetype identified in TCGA cohort. F. Scatterplot of immune cell population fraction using only viable

cells or total cells as denominator. G, H, I, J, K, L. Representative H&E (top) and immunofluorescence (bottom) images of tumor biopsies from lung, kidney skin,

pancreas, uterus and colorectal tumor tissues using CD45 (red) and DAPI (blue) staining for each cluster/archetype identified in IPI cohort.
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Figure S3. Coarse immune archetypes identified in TCGA are independent of tissue origin and associated to overall survival, related to

Figure 3

A. Left-UMAPdisplay and graph-based clustering of immune archetypes using 3-feature clusteringwithin TCGA cohort color-coded by tumor type. Right stacked

bar plot of the tumor type distribution for 3-feature archetypes in the TCGA cohort - B, C, D. (Left) Pie charts representing distribution of each archetype by cancer

type from IPI (top) and TCGA (bottom) cohorts using 3 features. (Right) Kaplan-Meier overall survival curves for each immune archetype identified on TCGA

dataset for Bladder urothelial carcinoma (B, BLCA), Gynecologic tumors (C,UCS + UCEC +OV),) and Head and Neck squamous cell carcinoma (D, HNSC).
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Figure S4. Generation and validation of CD4 CD8 and Treg signatures and further exploration of 6-feature archetypes, related to Figure 4

A. Venn diagram and gene names of the Treg (CD4+ regulatory T cell) feature gene signature score (see STAR Methods). B. Volcano plot visualizing differential

gene expression between CD4+ or CD8+ T cells in the tcell compartment. Feature gene signatures are listed in red squares. C. Correlation plots of CD4, CD8 and

Treg features versus their corresponding flow population fractions (top) and CIBERSORT derived fractions (bottom) color-coded by tumor type. D. Violin plots of

the 6 features distributions in each cluster/archetype in the IPI cohort. E. Scatterplot of the Davies-Bouldin index and cluster size over multiple iterations of

Louvain clustering and varying parameters using 6-feature clustering in the IPI cohort. F UMAP of immune archetypes using 6-feature clustering in the IPI cohort.

(Right) UMAP overlay of samples that needed to calculate their CD4 and CD8 feature score flow cytometry population fractions (see STAR Methods).G, H. Box

and whisker plot of total immune cell population fraction (G) and pan chemokine gene score (H) by 6-feature cluster/archetypes in the IPI cohort. I. Heatmap of the

Spearman correlation coefficient of gene expression between CTLA4, CD38, PDCD1, HAVCR2 and LAG3 and our Exhaustion phenotype gene signature with

additional genes associatedwith exhaustion used as a control. J. Gating strategy of tumor associated conventional CD4+ andCD8+ T cells and themarkers used

to define exhaustion. K. Correlation plots of individual and combined CD4+ PD1+ CTLA4+ and CD8+ PD1+ CTLA4+ conventional T cells population fractions

against the Exhaustion phenotype gene signature score color-coded by tumor type. L. (Left) UMAP display and graph-based clustering of tumor immune ar-

chetypes using 6-feature clustering in the IPI cohort. (Right) UMAP overlay of the Exhaustion phenotype score calculated in the tcell compartment. M, N. Box and

whisker plots of Exhaustion phenotype score (M) andMHCClass I phenotype score calculated in the tumor compartment (N) for each cluster/archetype identified

in IPI cohort using 6-feature clustering. O. Gating Strategy for the quantification of the mononuclear phagocytic subsets (monocytes ‘‘Mo,’’ Macrophages ‘‘Mp,’’

Classical dendritic cell type 2 ‘‘DC2’’ and Type 1 ‘‘DC1,’’ Plasmacytoid dendritic cells ‘‘pDCs’’ and Neutrophils ‘‘NE.’’ P. UMAP overlay on the 6-feature clustering

of classical dendritic cell type 1 (cDC1) and 2 (cDC2), plasmacytoid dendritic cells (pDCs), monocytes (Mono) and macrophages (Mac) frequencies measured by

flow cytometry.
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Figure S5. Single-cell RNA-seq-derived myeloid gene signatures refine immune archetypes, related to Figure 5

A. Details of the processing pipeline for digesting fresh tumor biopsies into single cell suspension, submitting to multi-parametric flow cell sorting of tumor

associated myeloid population and encapsulation for single-cell RNA sequencing. B. UMAP and graph-based clustering of tumor associated myeloid cells from

Melanoma processed for single-cell RNA sequencing. Each dot represents a cell. C. Dot plot of the top differentially-expressed-genes (DEG) between clusters

identified in tumor associated mononuclear phagocytic cell (MNP) subsets in the discovery melanoma sample. D. UMAP and graph-based clustering of tumor

associated myeloid cells from 11 different tumor resected tissues coming from 3 different cancer types (Kidney, Melanoma and Head and Neck) processed for

single-cell RNA sequencing as depicted in A. Each dot represents a cell. E. Dot plot of the top differentially-expressed-genes (DEG) identified in C and top (DEG

for DC3 cluster are colored in Red. F. Correlation plots of Macrophages, Monocytes, cDC1, cDC2 and pDCs gene scores against their corresponding flow

population fractions in the myeloid compartment, color-coded by tumor type. G. Box and whisker plots gene score for pDCs (out of myeloid compartment) in IPI

cohort. H. Scatterplot of the Davies-Bouldin index and cluster size over multiple iterations of Louvain clustering and varying parameters using 10-feature

clustering in the IPI cohort. I. (Left) UMAP of tumor immune archetypes using 10-feature clustering in the IPI cohort. (Center-Right) UMAP overlay of samples that

needed to calculate their CD4 and CD8 feature score and their Macrophages, Monocytes, cDC1 and cDC2 feature scores using flow cytometry population

fractions (see STAR Methods). J. Violin plots of the 10 features in each cluster/archetype in the IPI cohort.
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Figure S6. Immune cell frequency and transcriptomic profile pattern associated to each tumor archetype, related to Figure 6

A. (Left) UMAP display and graph-based clustering of tumor immune archetypes using 10-feature clustering in the IPI cohort. Each dot represents a single patient

summarized by the 10 features. (Right) UMAP overlay of immune cell frequency measured by flow cytometry. B. Gating Strategy for the quantification of B cells

(blue) and NK cells (red). C-D. Box and whisker plots of NK cells (C) and B cells (D) frequency out of all viable cells quantified by flow cytometry for each cluster/

archetype identified in IPI cohort. E. UMAP overlay of neutrophils frequency out the total immune cells measured by flow cytometry. F. UMAP overlay of a

Stimulatory DC gene signature score measure on ‘all viable cells’ RNaseq compartment. G. Box and whisker plots of Exhaustion phenotpye score across 10-

feature archetypes.

ll
Resource



(legend on next page)
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Figure S7. Immune archetypes tie closely to tumor biology and disease outcome, related to Figure 7

A to K. (Left) Pie charts representing the distribution of each archetype by cancer type in IPI 10-feature clustering (top) and TCGA (bottom) cohorts. (Right) Kaplan-

Meier overall survival curve for the most abundant immune tumor archetype by cancer type in TCGA cohort (see STAR Methods). L-N. stacked bar plots of the

tumor stage (L) tumor grade (M) and tumor type (N) distributions for 10-featurs archetypes in the IPI (left) and TCGA (right) cohorts. In N more than 70% of the

metastatic tumors are melanoma for both datasets (14/18 IPI) and 364/378 for TCGA).
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